Nanoscale single-electron pumps can be used to generate accurate currents, and can potentially serve to realize a new standard of electrical current based on elementary charge. Here, we use a silicon-based quantum dot with tunable tunnel barriers as an accurate source of quantized current. The charge transfer accuracy of our pump can be dramatically enhanced by controlling the electrostatic confinement of the dot using purposely engineered gate electrodes. Improvements in the operational robustness, as well as suppression of non-adiabatic transitions that reduce pumping accuracy, are achieved via small adjustments of the gate voltages. We can produce an output current in excess of 80 pA with experimentally determined relative uncertainty below 50 parts per million.As early as one and a half centuries ago, J. C. Maxwell envisaged the need for a system of standards based on phenomena at the atomic scale and directly related to invariant constants of nature. 1 However, Maxwell could not anticipate that, in order to harness the behaviour of the world at the nanometer scale, a completely new physical interpretation was needed, namely, quantum mechanics. At first, the laws of quantum mechanics seemed to reveal fundamental limits to the accuracy of physical measurements. Concepts like the Heisenberg uncertainty principle, which imposes intrinsic fluctuations on the values of non-commuting observables, and the wavefunction collapse, responsible for the randomization of a system configuration after performing a measurement, appeared to be at odds with the requirement of deterministic consistency that is paramount for metrological purposes. Nevertheless, quantum-based systems are today acknowledged as the most stable and reliable metrological tools, as they can be strongly intertwined with fundamental constants. Exquisitely quantum-mechanical phenomena such as the ac Josephson effect 2 and the quantum Hall effect 3 have paved the way towards new and more reliable reference standards for the units of voltage and resistance, respectively.Major efforts are currently ongoing to re-define the unit of electrical current, the ampere (A), in terms of the elementary charge, e, by means of quantum technologies 4,5 . A practical implementation of this standard may be the electron pump, a device in which a quantum phenomenon, namely tunnelling, and classical Coulomb repulsion, are combined to control the transfer of an integer number of elementary charges. This device ideally generates a quantized output current, I P = nef , where n is an integer and f is the frequency of an external periodic drive. Several enabling technologies have already been developed including metal/oxide tunnel barrier devices 6,7 , normal-metal/superconductor turnstiles 8,9 , graphene double quantum dots 10 , donor-based pumps 11-13 , silicon-based quantum dot pumps 14-18 and GaAs-based quantum dot pumps [19][20][21][22][23][24][25][26][27] . To date, the latter scheme provides the lowest uncertainty of 1.2 parts per million (ppm) yielding current in excess o...
Single-electron pumps based on semiconductor quantum dots are promising candidates for the emerging quantum standard of electrical current. They can transfer discrete charges with part-per-million (ppm) precision in nanosecond time scales. Here, we employ a metal-oxide-semiconductor silicon quantum dot to experimentally demonstrate high-accuracy gigahertz single-electron pumping in the regime where the number of electrons trapped in the dot is determined by the thermal distribution in the reservoir leads. In a measurement with traceability to primary voltage and resistance standards, the averaged pump current over the quantized plateau, driven by a 1-GHz sinusoidal wave in the absence of a magnetic field, is equal to the ideal value of ef within a measurement uncertainty as low as 0.27 ppm.
Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Alternatively, singlet-triplet readout enables high-fidelity spin-state measurements in much lower magnetic fields, without the need for reservoirs. Here, we demonstrate low-field operation of metal-oxide-silicon quantum dot qubits by combining coherent single-spin control with high-fidelity, single-shot, Pauli-spin-blockade-based ST readout. We discover that the qubits decohere faster at low magnetic fields with μs and μs at 150 mT. Their coherence is limited by spin flips of residual 29Si nuclei in the isotopically enriched 28Si host material, which occur more frequently at lower fields. Our finding indicates that new trade-offs will be required to ensure the frequency stabilization of spin qubits, and highlights the importance of isotopic enrichment of device substrates for the realization of a scalable silicon-based quantum processor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.