Mesenchymal stem/stromal cells (MSCs) derived from placental tissue show great therapeutic potential and have been used in medical treatment, but the similarity and differences between the MSCs derived from various parts of the placenta remain unclear. In this study, we compared MSCs derived from different perinatal tissues, including the umbilical cord (UC), amniotic membrane (AM), chorionic plate (CP) and decidua parietalis (DP). Using human leukocyte antigen (HLA) typing and karyotype analysis, we found that the first three cell types were derived from the foetus, while the MSCs from the decidua parietalis were derived from the maternal portion of the placental tissue. Our results indicate that both foetal and maternal MSCs share a similar phenotype and multi-lineage differentiation potential, but foetal MSCs show a significantly higher expansion capacity than do maternal MSCs. Furthermore, MSCs from all sources showed significant differences in the levels of several paracrine factors.
In order to take advantage of the merits of WPT and HHT in feature extraction from vibration signals of power transformer, a time-scale-frequency analysis method is developed based on the combination of these two techniques. This method consists of two steps. First, the desirable wavelet packet nodes corresponding to characteristic frequency bands of power transformer are selected through a Correlation Degree Threshold Screening (CDTS) technique for reconstructing a time-domain signal that contains useful information of power transformer. Second, the HHT is then conducted on the reconstructed signal to track the instantaneous frequencies corresponding to natural characteristics of power transformer. Experimental results are provided by analyzing a real power transformer vibration signal. Compared with the features extracted by directly using HHT, the features obtained by the proposed method reveal clearer condition pattern of the transformer, which shows the potential of this method in condition monitoring of power transformer
PurposeThe purpose of this study was to determine the protective effects of Resveratrol (RESV) on acute bright light-induced retinal degeneration in aged senescence accelerated mouse strain.MethodsTen three-month-old male SAMP8 mice (prone to aging) were randomly assigned to two experimental dietary groups: one untreated group and one RESV treatment group (n=20 eyes for each group). After 30 days of treatment, mice were exposed to intense bright light. Ten male SAMR1 mice (resistant to aging) served as control (n=20 eyes). The protective effects of RESV administration on light-induced retinal degeneration in SAMP8 strain as well as the effect of bright light damage in the retinas of SAMP8 mice were analyzed by electroretinography (ERG), retinal histology, mRNA, protein and lipid profile.Results68%-85% of a-wave amplitude and 72%-92% of b-wave amplitude were persevered by RESV in SAMP8 mice that were exposed to light damage. Also, RESV preserved their photoreceptor nuclei. mRNA expression of neuroprotective factors leukemia inhibitory factor (LIF), brain derived neurotrophic factor (BDNF), oncostatin M (OSM), cardiotrophin 1(CT-1) and cardiotrophin-like cytokine (CLC) were up-regulated 28, 8, 7, 5 and 9-fold in SAMP8 mice after RESV treatment. In addition, RESV could suppress the NF-κB pathway by down-regulating the expression of pIκB. Light damage led to increase of saturated FA, monoenoic FA, n6 PUFA and n6/n3 ratio and decrease of Docosahexaenoic acid (DHA). There was no significant difference on DHA and the ratio of n6/n3-FA between the untreated and RESV treated SAMP8 mice.ConclusionsCollectively, our study provides evidence that RESV prevents light-induced retinal damage associated with aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.