Temperature changes over the Tibetan Plateau (TP) exhibit a dependence on altitude, as observed from meteorological station data and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data. However, little is known about the changes in water surface temperature (WST) of lakes in the TP under the warming climate conditions over the past few decades. In this study, lake WST was examined using a MODIS/Terra 8 day LST (nighttime) product (MOD11A2) over the period 2001-2012. It was found that 52 lakes included in the analysis of WST exhibited an average rate of change of 0.012 ± 0.033°C/yr. Of these 52 lakes, 31 lakes (60%) displayed a temperature increase with a mean warming rate of 0.055 ± 0.033°C/yr and 21 lakes (40%) displayed a temperature decrease with a mean cooling rate of À0.053 ± 0.038°C/yr. The rates of change in WST for 13 lakes were statistically significant, and these included nine warming and four cooling lakes. Of the 17 lakes with nearby weather stations, nine lakes (53%) showed faster warming than nearby air/land. The warming lakes could be attributed to locally rising air and land surface temperatures as well as other factors such as the decreased lake ice cover. The cooling lakes were mostly located at high elevations (>4200 m), and the trend could have been due to increased cold water discharge to the lakes from accelerated glacier/snow melts. Therefore, both warming and cooling lake temperatures in the TP were possibly the result of increased air temperatures (0.036 ± 0.027°C/yr) under global warming conditions.
Rain gauge and satellite-retrieved data have been widely used in basin-scale hydrological applications. While rain gauges provide accurate measurements that are generally unevenly distributed in space, satellites offer spatially regular observations and common error prone retrieval. Comparative evaluation of gauge-based and satellite-based data is necessary in hydrological studies, as precipitation is the most important input in basin-scale water balance. This study uses quality-controlled rain gauge data and prevailing satellite products (Tropical Rainfall Measuring Mission (TRMM) 3B43, 3B42 and 3B42RT) to examine the consistency and discrepancies between them at different scales. Rain gauges and TRMM products were available in the Poyang Lake Basin, China, from 1998 (3B42RT: 2000. Our results show that the performance of TRMM products generally increases with increasing spatial scale. At both the monthly and annual scales, the accuracy is highest for TRMM 3B43, with 3B42 second and 3B42RT third. TRMM products generally overestimate precipitation because of a high frequency and degree of overestimation in light and moderate rain cases. At the daily scale, the accuracy is relatively low between TRMM 3B42 and 3B42RT. Meanwhile, the performances of TRMM 3B42 and 3B42RT are highly variable in different seasons. At both the basin and pixel scales, TRMM 3B43 and 3B42 exhibit significant discrepancies from July to September, performing worst in September. For TRMM 3B42RT, all statistical indices fluctuate and are low throughout the year, performing worst in July at the pixel scale and January at the basin scale. Furthermore, the spatial distributions of the statistical indices of TRMM 3B43 and 3B42 performed well, while TRMM 3B42RT displayed a poor performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.