Emerging evidence has demonstrated transdifferentiation process of glioma stem cells (GSCs) into endothelial cells (ECs) in glioma neovascularization. Herein, we focused on screening for genes that were differentially expressed in the transdifferentiation process using microarray analysis. Bioinformatics analysis revealed differential expression of the prolyl 4-hydroxylase subunit alpha-1 (P4HA1) gene. We determined that P4HA1 expression was correlated with histological grade, the level of Ki67 and microvessel density (MVD) in human glioma specimens. Knockdown of P4HA1 inhibited the proliferation, migration and tube formation of GSCs in vitro. In vivo studies revealed that the downregulation of P4HA1 inhibited intracranial tumor growth, prolonged the overall survival time of xenograft mice and suppressed the neovascularization in brain tumors. Moreover, P4HA1 regulates the expression of vascular endothelial growth factor A (VEGF-A), especially an anti-angiogenic isoform-VEGF165b. Additionally, knockdown of P4HA1 inhibited the synthesis of collagen IV, and hence disrupted the structures of vascular basement membranes (BMs) in gliomas. Our study indicates that P4HA1 plays a pivotal role in the process of GSC-EC transdifferentiation and the structural formation of vascular BMs.
Our results suggest that FASN plays a pivotal role in glioma neovascularization, and inhibition of FASN may be a potential target for anti-angiogenic therapy for glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.