Increased consumption of whole grains has been associated with reduced risk of developing major chronic diseases. These health benefits have been attributed in part to their unique phytochemicals. Previous studies on black rice mainly focused on anthocyanins. Little is known about the phytochemical profiles and antioxidant activities of different black rice varieties. The objective of this study was to determine the phytochemical profiles and antioxidant activity of rice bran samples from 12 diverse varieties of black rice. The free, bound, and total phenolic contents of black rice bran samples ranged from 2086 to 7043, from 221.2 to 382.7, and from 2365 to 7367 mg of gallic acid equiv/100 g of dry weight (DW), respectively. The percentage contribution of free phenolics to the total ranged from 88.2 to 95.6%. The average values of free, bound, and total phenolic contents of black rice bran were 8, 1.5, and 6 times higher than those of white rice bran, respectively (p < 0.05). The free, bound, and total flavonoid contents of black rice bran samples ranged from 3462 to 12061, from 126.7 to 386.9, and from 3596 to 12448 mg of catechin equiv/100 g of DW, respectively. The percentage contribution of free flavonoids to the total ranged from 96.3 to 97.6%. The average values of free, bound, and total flavonoid contents of black rice bran were 7.4, 1.9, and 6.7 times higher than those of white rice bran, respectively (p < 0.05). The free, bound, and total anthocyanin contents of black rice bran samples ranged from 1227 to 5096, from 4.89 to 8.23, and from 1231 to 5101 mg of cyanidin-3-glucoside equiv/100 g of DW, respectively. The percentage contribution of free anthocyanins to the total ranged from 99.5 to 99.9%. Cyanidin-3-glucoside, cyanidin-3-rutinoside, and peonidin-3-glucoside were detected in black rice bran samples and ranged from 736.6 to 2557, from 22.70 to 96.62, and from 100.7 to 534.2 mg/100 g of DW, respectively. The free, bound, and total antioxidant activities of black rice bran samples ranged from 476.9 to 180, from 47.91 to 79.48, and from 537.5 to 1876 mumol of Trolox equiv/g of DW, respectively. The percentage contribution of free antioxidant activity to the total ranged from 88.7 to 96.0%. The average values of free, bound, and total antioxidant activity of black rice bran were more than 8, 1.5, and 6 times higher than those of white rice bran, respectively (p < 0.05). The total antioxidant activity of black rice bran was correlated to the content of total phenolics, total flavonoids, and total anthocyanins and also was significantly correlated to the contents of cyanidin-3-glucoside, cyanidin-3-rutinoside, and peonidin-3-glucoside. These results indicate that there are significant differences in phytochemical content and antioxidant activity among the different black rice varieties. Black rice bran has higher content of phenolics, flavonoids, and anthocyanins and has higher antioxidant activity when compared to white rice bran. Interestingly, the phenolics, flavonoids, and anthocyanins of black rice...
The altering of electronic states of metal oxides offers a promising opportunity to realize high‐efficiency surface catalysis, which play a key role in regulating polysulfides (PS) redox in lithium–sulfur (Li–S) batteries. However, little effort has been devoted to understanding the relationship between the electronic state of metal oxides and a catalyst's properties in Li–S cells. Herein, defect‐rich heterojunction electrocatalysts composed of ultrathin TiO2‐x nanosheets and carbon nanotubes (CNTs) for Li–S batteries are reported. Theoretical simulations indicate that oxygen vacancies and heterojunction can enhance electronic conductivity and chemical adsorption. Spectroscopy and electrochemical techniques further indicate that the rich surface vacancies in TiO2‐x nanosheets result in highly activated trapping sites for LiPS and lower energy barriers for fast Li ion mobility. Meanwhile, the redistribution of electrons at the heterojunction interfaces realizes accelerated surface electron exchange. Coupled with a polyacrylate terpolymer (LA132) binder, the CNT@TiO2‐x–S electrodes exhibit a long cycle life of more than 300 cycles at 1 C and a high area capacity of 5.4 mAh cm−2. This work offers a new perspective on understanding catalyst design in energy storage devices through band engineering.
Inorganic cesium lead halide perovskites with superb thermal stability show promise to fabricate long-term operational photovoltaic devices. However, the cubic phase (α) of CsPbI 3 with an appropriate band gap is unstable in air. We discover that highly stable α-CsPbI 3 can be obtained in dry air (temperature: 20−30 °C; humidity: 10−20%) by replacing PbI 2 with HPbI 3 in a one-step deposition solution. Furthermore, the band gap of HPbI 3processed α-CsPbI 3 is advantageously reduced from 1.72 to 1.68 eV due to the existence of tensile lattice strain. By employing such an α-CsPbI 3 film in carbon-based perovskite solar cells (C-PSCs), a power conversion efficiency (PCE) of 9.5% is achieved, which is a record value for the α-CsPbI 3 PSCs without hole transport material. Most importantly, over 90% of the initial PCE is retained for nonencapsulated devices after 3000 h of storage in dry air. Therefore, HPbI 3 -based one-step deposition presents a promising strategy to prepare high-performance and air-stable α-CsPbI 3 PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.