This study attempts to understand contributions of ENSO and the boreal summer sea surface temperature anomaly (SSTA) in the East Indian Ocean (EIO) to the interannual variability of tropical cyclone (TC) frequency over the western North Pacific (WNP) and the involved physical mechanisms. The results show that both ENSO and EIO SSTA have a large control on the WNP TC genesis frequency, but their effects are significantly different. ENSO remarkably affects the east-west shift of the mean genesis location and accordingly contributes to the intense TC activity. The EIO SSTA affects the TC genesis in the entire genesis region over the WNP and largely determines the numbers of both the total and weak TCs. ENSO modulates the large-scale atmospheric circulation and barotropic energy conversion over the WNP, contributing to changes in both the TC genesis location and the frequency of intense TCs. The EIO SSTA significantly affects both the western Pacific summer monsoon and the equatorial Kelvin wave activity over the western Pacific, two major large-scale dynamical controls of TC genesis over the WNP. In general the warm (cold) EIO SSTA suppresses (promotes) the TC genesis over the WNP. Therefore, a better understanding of the combined contributions of ENSO and EIO SSTA could help improve the seasonal prediction of the WNP TC activity.
Previous studies have documented an abrupt decrease of tropical cyclone (TC) genesis frequency over the western North Pacific (WNP) since 1998. In this study, results from an objective clustering analysis demonstrated that this abrupt decrease is primarily related to the decrease in a cluster of TCs (C1) that mostly formed over the southeastern WNP, south of 15°N and east of the Philippines, and possessed long tracks. Further statistical analyses based on both best track TC data and global reanalysis data during 1980–2015 revealed that the genesis of C1 TCs was significantly modulated by the interdecadal Pacific oscillation (IPO), whose recent negative phase since 1998 corresponded to a La Niña–like sea surface temperature anomaly (SSTA) pattern, which strengthened the Walker circulation in the tropical Pacific and weakened the WNP monsoon trough, suppressing genesis of C1 TCs in the southeastern WNP and predominantly contributing to the decrease in TC genesis frequency over the entire WNP basin. These findings were further confirmed by results from similar analyses based on longer observational datasets and also the outputs from a 500-yr preindustrial general circulation model experiment using the Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model, version 3. Additional analysis indicates that the decrease in C1 TC genesis frequency in the recent period was dominated during August–October, with the largest decrease in October.
The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System) is defined at a point 0.39m below the base of the Kuanyinchiao Bed in the Wangjiawan North section. The section is located near Wangjiawan village, 42 km north of Yichang city (western Hubei, China), at 30º 58'56"N and 111º 25'10"E. The GSSP level coincides with the first appearance of the graptolite species Normalograptus extraordinarius (Sobolevskaya). Secondary markers include the onset of a positive carbon-isotope excursion, and a slightly earlier first appearance of Normalograptus ojsuensis (Koren and Mikhailova). The Wangjiawan North section possesses continuity of sedimentation and biozonation with completeness of exposures, abundant and well-preserved graptolites and shelly fossils, i. e. the Hirnantia-Dalmanitina shelly fauna which is a key element for recognition of the Hirnantian Stage. The Wangjiawan North, South and Riverside sections possess favorable facies and widespread correlation potential, are free from structure complication, metamorphism and other alteration, and have good accessibility. The Riverside section in particular possesses amenability to isotopic age determination. The beginning of the Hirnantian was followed by a global episode of a major extinction event, which happened in the Diceratograptus mirus Subzone.
The impact of the sea surface temperature anomaly (SSTA) in the East Indian Ocean (EIO) on the tropical cyclone (TC) frequency over the western North Pacific (WNP) and the involved physical mechanisms are examined using the International Pacific Research Center (IPRC) Regional Atmospheric Model (iRAM) driven by the reanalysis and the observed SSTs. The model reproduces generally quite realistic climatic features of the WNP TC activity, including the interannual variability of the WNP TC genesis frequency, the geographical distributions of TC genesis and frequency of occurrence. In particular, the model reproduces the observed statistical (negatively correlated) relationship between the WNP TC frequency and the EIO SSTA, as recently studied by Zhan et al.The experiments with artificially imposed SSTA in the EIO in the year 2004 with normal EIO SST and WNP TC activity confirm that the EIO SSTA does affect the TC genesis frequency in the entire genesis region over the WNP by significantly modulating both the western Pacific summer monsoon and the equatorial Kelvin wave activity over the western Pacific, two major large-scale dynamical controls of TC genesis over the WNP. Additional sensitivity experiments are performed for two extreme years: one (1994) with the highest and one (1998) with the lowest TC annual frequencies in the studied period. The results reveal that after the EIO SSTAs in the two extreme years are removed, the TC frequency in 1998 is close to the climatological mean, while the excessive TCs in 1994 are still simulated. The model results suggest that the warm EIO might be a major factor contributing to the unusually few TCs formed over the WNP in 1998, but the cold EIO seemed to contribute little to the excessive WNP TCs in 1994.
The poleward migration of the annual mean location of tropical cyclone (TC) lifetime maximum intensity (LMI) has been identified in the major TC basins of the globe over the past 30 years, which is particularly robust over the western North Pacific (WNP). This study has revealed that this poleward migration consists mainly of weak TCs (with maximum sustained surface wind speed less than 33 m s−1) over the WNP. Results show that the location of LMI of weak TCs has migrated about 1° latitude poleward per decade since 1980, while such a trend is considerably smaller for intense TCs. This is found to be linked to a significant decreasing trend of TC genesis in the southern WNP and a significant increasing trend in the northwestern WNP over the past 30 years. It is shown that the greater sea surface temperature (SST) warming at higher latitudes associated with global warming and its associated changes in the large-scale circulation favor more TCs to form in the northern WNP and fewer but stronger TCs to form in the southern WNP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.