An efficient metal‐free photocatalyst composed of black phosphorus (BP) and graphitic carbon nitride (CN) is prepared on a large scale by ball milling. Using economical urea and red phosphorus (RP) as the raw materials, the estimated materials cost of BP/CN is 0.235 Euro per gram. The BP/CN heterostructure shows efficient charge separation and possesses abundant active sites, giving rise to excellent photocatalytic H2 evolution and rhodamine B (RhB) degradation efficiency. Without using a co‐catalyst, the metal‐free BP/CN emits H2 consistently at a rate as large as 786 µmol h−1 g−1 and RhB is decomposed in merely 25 min during visible‐light irradiation. The corresponding electron/hole transfer and catalytic mechanisms are analyzed and described. The efficient metal‐free catalyst is promising in visible‐light photocatalysis and the simple ball‐milling synthetic method can be readily scaled up.
Integrating wide bandgap semiconductor photocatalysts with visible-light-active inorganic nanoparticles (such as Au and CdS) as sensitizers is one of the most efficient methods to improve their photocatalytic activity in the visible light region. However, as for all such composite photocatalysts, a rational design and precise control over their architecture is often required to achieve optimal performance. Herein, a new TiO2-based ternary composite photocatalyst with superior visible light activity was designed and synthesized. In this composite photocatalyst, the location of the visible light sensitizers was engineered according to the intrinsic facet-induced effect of well-faceted TiO2 nanocrystals on the spatial separation of photogenerated carriers. Experimentally, core-shell structured Au@CdS nanoparticles acting as visible light sensitizers were selectively deposited onto photoreductive {101} facets of well-faceted anatase TiO2 nanocrystals through a two-step in situ photodeposition route. Because the combination of Au@CdS and specific {101} facets of TiO2 nanocrystals facilitates the transport of charges photogenerated under visible light irradiation, this well-designed ternary composite photocatalyst exhibited superior activity in visible-light-driven photocatalytic H2 evolution, as expected.
The photocatalytic activity of faceted TiO2nanocrystals was efficiently enhanced by selectively loading α-Fe2O3and Pt co-catalysts onto specific facets.
The role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution was investigated in the ultrafine ZnO QD-modified TiO2 nanowire model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.