Solvothermal reactions with different solvents produced two iron trimesates [Fe2(H2O)2(BTC)4/3]Cl x 4.5(DMF) (1) and [Fe4Cl(BTC)8/3]Cl2 x H2O x 2.5(DEF) (2) (BTC = 1,3,5-benzenetricarboxylate, DMF = N,N'-dimethylformamide, DEF = N,N'-diethylformamide). The framework of 1 is a (3,4)-connected net constructed from mixed-valence paddlewheel Fe2(II, III) units and BTC linkers, while the framework of 2 is a (3,8)-connected net built from mixed-valence square-planar Fe4(III, III, III, II) units and BTC linkers. The large volume inside the framework of 1 (or 2) is occupied by disordered Cl- anions and guest DMF (or DEF) molecules. The mixed-valence character of the frameworks of 1 and 2 was confirmed by Mössbauer spectroscopy studies. The active electronic property of iron cations may be the origin of the variability of the iron-organic frameworks, which are readily affected by some synthetic factors, such as solvents. Magnetic studies reveal that there are antiferromagnetic exchange interactions among the Fe atoms in 1 and 2. Ion-exchange studies for 1 show that the Cl- anions inside the framework of 1 can be exchanged by CNS- anions.
The Dawson anion P 2W 18O 62 (6-) has been used as a noncoordinating polyoxoanion template for the construction of two metal-organic frameworks, namely, [M 2(bpy) 3(H 2O) 2(ox)][P 2W 18O 62]2(H 2-bpy). nH 2O (M = Co(II), n = 3 ( 1); M = Ni(II), n = 2 ( 2)) (bpy = 4,4'-bipyridine; ox = C 2O 4 (2-)). Single-crystal X-ray analysis reveals that both of the structures exhibit 3D host frameworks constructed from the oxalate-bridged binuclear superoctahedron secondary building units (SBUs) and bpy linkers and the voids of which are occupied by Dawson anions, guest bpy, and water molecules. Magnetic studies reveal that there are antiferromagnetic exchange interactions among the transition-metal centers in compounds 1 and 2. Furthermore, a compound 1-modified carbon paste electrode ( 1-CPE) displays good electrocatalytic activity toward the reduction of nitrite.
Two novel organic-inorganic hybrid compounds based on Anderson-type polyoxoanions, [Cu2(bpy)2(mu-ox)][Al(OH)7Mo6O17] (1) and [Cu2(bpy)2(mu-ox)][Cr(OH)7Mo6O17] (2), have been synthesized and characterized by elemental analyses, IR, and X-ray powder diffraction. The crystal structures of 1 and 2 have been established by single-crystal X-ray diffraction, which reveals the presence of 1D chains constructed of alternating Anderson-type polyoxoanions and oxalato-bridged dinuclear copper complexes for both compounds and extensive hydrogen bonding that plays an important role in the formation of the 3D supramolecular network structures of 1 and 2. To elucidate the electronic properties and magnetic properties of the metal ions (Cu2+ or Cu2+ and Cr3+), EPR studies and magnetic susceptibility studies have been performed, respectively. The results are consistent with the structural feature of these compounds.
Naringin is a kind of multi-source food additive which has been explored broadly for its various biological activities and therapeutic potential. In the present study, the protective effect and mechanism of naringin on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were investigated. The results showed that naringin significantly alleviated DSS-induced colitis symptoms, including disease activity index (DAI), colon length shortening, and colon pathological damage. The tissue and serum secretion of inflammatory cytokines, as well as the oxidative stress, were decreased accordingly upon naringin intervention. Naringin also decreased the proteins involved in inflammation and increased the expression of tight junction (TJ) proteins. Moreover, naringin increased the relative abundance of Firmicutes/Bacteroides and reduced the content of Proteobacteria to improve the intestinal flora disorder caused by DSS, which promotes the intestinal health of mice. It was concluded that naringin can significantly ameliorate the pathogenic symptoms of UC through inhibiting inflammatory response and regulating intestinal microbiota, which might be a promising natural therapeutic agent for the dietary treatment of UC and the improvement of intestinal symbiosis.
A series of organic-inorganic hybrid compounds, K2H7[{Ln(PW11O39)2}{Cu2(bpy)2(mu-ox)}].xH2O (Ln = La, x approximately = 18 (1); Ln = Pr, x approximately = 18(2); Ln = Eu, x approximately = 16(3); Ln = Gd, x approximately 22(4); Ln = Yb, x approximately = 19 (5); bpy = 2,2'-bipyridine and ox = oxalate), have been isolated by the conventional solution method. Single-crystal X-ray diffraction studies reveal that compounds 1-5 are isomorphic and consist of one-dimensional chains, which are constructed by alternating bis(undecatungstophosphate) lanthanates [Ln(PW11O39)2](11-) and dinuclear copper(II)-oxalate complexes [Cu2(bpy)2(mu-ox)]2+.pi-pi interactions of the bpy ligands from adjacent chains lead to their three-dimensional structures. An analogue of potassium K2H9[{K(PW11O39)2}{Cu2(bpy)2(mu-ox)}1].approximately 20.5H2O(6) has also been obtained. The syntheses and structures of these compounds are reported here. Magnetic properties of 1, 2 and 3 are discussed as well. Attempts to crystallize similar compounds containing Co(II) and Ni(II) were unsuccessful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.