Stock movement prediction is a hot topic in the Fintech area. Previous works usually predict the price movement in a daily basis, although the market impact of news can be absorbed much shorter, and the exact time is hard to estimate. In this work, we propose a more practical objective to predict the overnight stock movement between the previous close price and the open price.
As no trading operation occurs after market close, the market impact of overnight news will be reflected by the overnight movement.
One big obstacle for such task is the lacking of data, in this work we collect and publish the overnight stock price movement dataset of Reuters Financial News.
Another challenge is that the stocks in the market are not independent, which is omitted by previous works.
To make use of the connection among stocks, we propose a LSTM Relational Graph Convolutional Network (LSTM-RGCN) model, which models the connection among stocks with their correlation matrix.
Extensive experiment results show that our model outperforms the baseline models. Further analysis shows that the introduction of the graph enables our model to predict the movement of stocks that are not directly associated with news as well as the whole market, which is not available in most previous methods.
Considering event structure information has proven helpful in text-based stock movement prediction. However, existing works mainly adopt the coarse-grained events, which loses the specific semantic information of diverse event types. In this work, we propose to incorporate the fine-grained events in stock movement prediction. Firstly, we propose a professional finance event dictionary built by domain experts and use it to extract fine-grained events automatically from finance news. Then we design a neural model to combine finance news with fine-grained event structure and stock trade data to predict the stock movement. Besides, in order to improve the generalizability of the proposed method, we design an advanced model that uses the extracted finegrained events as the distant supervised label to train a multi-task framework of event extraction and stock prediction. The experimental results show that our method outperforms all the baselines and has good generalizability.
Incorporating related text information has proven successful in stock market prediction. However, it is a huge challenge to utilize texts in the enormous forex (foreign currency exchange) market because the associated texts are too redundant. In this work, we propose a BERT-based Hierarchical Aggregation Model to summarize a large amount of finance news to predict forex movement. We firstly group news from different aspects: time, topic and category. Then we extract the most crucial news in each group by the SOTA extractive summarization method. Finally, we conduct interaction between the news and the trade data with attention to predict the forex movement. The experimental results show that the category based method performs best among three grouping methods and outperforms all the baselines. Besides, we study the influence of essential news attributes (category and region) by statistical analysis and summarize the influence patterns for different currency pairs.
Trading volume movement prediction is the key in a variety of financial applications. Despite its importance, there is few research on this topic because of its requirement for comprehensive understanding of information from different sources. For instance, the relation between multiple stocks, recent transaction data and suddenly released events are all essential for understanding trading market. However, most of the previous methods only take the fluctuation information of the past few weeks into consideration, thus yielding poor performance. To handle this issue, we propose a graph-based approach that can incorporate multi-view information, i.e., long-term stock trend, short-term fluctuation and sudden events information jointly into a temporal heterogeneous graph. Besides, our method is equipped with deep canonical analysis to highlight the correlations between different perspectives of fluctuation for better prediction. Experiment results show that our method outperforms strong baselines by a large margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.