A collection of 130 new plant cell wall glycan-directed monoclonal antibodies (mAbs) was generated with the aim of facilitating in-depth analysis of cell wall glycans. An enzyme-linked immunosorbent assay-based screen against a diverse panel of 54 plant polysaccharides was used to characterize the binding patterns of these new mAbs, together with 50 other previously generated mAbs, against plant cell wall glycans. Hierarchical clustering analysis was used to group these mAbs based on the polysaccharide recognition patterns observed. The mAb groupings in the resulting cladogram were further verified by immunolocalization studies in Arabidopsis (Arabidopsis thaliana) stems. The mAbs could be resolved into 19 clades of antibodies that recognize distinct epitopes present on all major classes of plant cell wall glycans, including arabinogalactans (both protein-and polysaccharide-linked), pectins (homogalacturonan, rhamnogalacturonan I), xyloglucans, xylans, mannans, and glucans. In most cases, multiple subclades of antibodies were observed to bind to each glycan class, suggesting that the mAbs in these subgroups recognize distinct epitopes present on the cell wall glycans. The epitopes recognized by many of the mAbs in the toolkit, particularly those recognizing arabinose-and/or galactose-containing structures, are present on more than one glycan class, consistent with the known structural diversity and complexity of plant cell wall glycans. Thus, these cell wall glycan-directed mAbs should be viewed and utilized as epitope-specific, rather than polymer-specific, probes. The current world-wide toolkit of approximately 180 glycan-directed antibodies from various laboratories provides a large and diverse set of probes for studies of plant cell wall structure, function, dynamics, and biosynthesis.
Parasitism genes expressed in the esophageal gland cells of root-knot nematodes encode proteins that are secreted into host root cells to transform the recipient cells into enlarged multinucleate feeding cells called giant-cells. Expression of a root-knot nematode parasitism gene which encodes a novel 13-amino-acid secretory peptide in plant tissues stimulated root growth. Two SCARECROW-like transcription factors of the GRAS protein family were identified as the putative targets for this bioactive nematode peptide in yeast two-hybrid analyses and confirmed by in vitro and in vivo coimmunoprecipitations. This discovery is the first demonstration of a direct interaction of a nematode-secreted parasitism peptide with a plant-regulatory protein, which may represent an early signaling event in the root-knot nematode-host interaction.
The objective of this study was to develop a Chinese Healthy Eating Index (CHEI) based on the updated Dietary Guidelines for Chinese (DGC-2016) and to apply it in the 2011 China Health and Nutrition Survey (CHNS-2011) to assess diet quality and its association with typical sociodemographic/economic factors. Data from 14,584 participants (≥2 years) from the CHNS-2011, including three 24-h dietary recalls and additional variables, were used to develop the CHEI. The standard portion size was applied to quantify food consumption. The CHEI was designed as a continuous scoring system, comprising 17 components; the maximum total score is 100. The mean, 1st and 99th percentiles of the CHEI score were 52.4, 27.6 and 78.3, respectively. Young and middle-aged adults scored better than the elderly. Diet insufficiency was chiefly manifested in fruits, dairy, whole grains and poultry; diet excess was mainly reflected in red meat, cooking oils and sodium. The CHEI was positively associated with education and urbanization levels; current smokers and unmarried people obtained relative low CHEI scores. Occupation and body mass index (BMI) were also related to the CHEI. Our findings indicate that the CHEI is capable of recognizing differences in diet quality among the Chinese, and it is sensitive to typical sociodemographic/economic factors.
SUMMARY Parasitism genes encoding secretory proteins expressed in the oesophageal glands of phytoparasitic nematodes play critical roles in nematode invasion of host plants, establishment of feeding sites and suppression of host defences. Two chorismate mutase (CM) genes potentially having a role in one or more of these processes were identified from a Meloidogyne incognita oesophageal gland-cell subtractive cDNA library. These M. incognita enzymes (designated as MI-CM-1 and MI-CM-2) with amino-terminal signal peptides, were significantly similar to chorismate mutases in M. javanica and bacteria. The complementation of an Escherichia coli CM-deficient mutant by the expression of Mi-cm-1 or Mi-cm-2 confirmed their CM activity. In-situ mRNA hybridization showed that the transcripts of Mi-cm-1 and Mi-cm-2 accumulated specifically in the two subventral oesophageal gland cells of M. incognita. RT-PCR analysis confirmed that their transcript abundances were high in the early parasitic juvenile stages, and low (Mi-cm-1) or undetectable (Mi-cm-2) in later parasitic stages of the nematode. Southern blot analysis revealed that these CM genes were members of a small multigene family in Meloidogyne species. The widespread presence of CMs in the specialized sedentary endoparasitic nematode species suggests that this multifunctional enzyme may be a key factor in modulating plant parasitism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.