Loess landslides induced by the freeze–thaw effect frequently occur in Yili, China. Freeze–thaw cycles cause indelible changes in the soil microstructure, affecting its permeability. This study investigated the impacts of freeze–thaw cycles on the permeability of Yili loess using permeability tests on undisturbed (virgin, in situ) and remolded loess samples taken before and after freeze–thaw cycles. Scanning electron microscopy and nuclear magnetic resonance techniques were utilized to investigate the microscopic mechanism of the freeze–thaw process on the loess. Grey relation analysis (GRA) was employed to analyze the correlation between macroscopic permeability and microscopic parameters (maxi. radius, eccentricity, fractal dimension, directional probability entropy, and porosity). The results revealed that the permeability and all the microstructure parameters have roughly shown the same trend: “fluctuation–towards equilibrium–stability”. Firstly, the permeability coefficients of original and remolded loess experienced three and two peaked–trends, respectively, before 30 freeze–thaw cycles. The trends eventually stabilized within 30–60 freeze–thaw cycles. Increased number of freeze–thaw cycles disintegrated large particles in undisturbed loess into medium–sized particles, and particle shapes became more uncomplicated. Medium–sized particles in the remolded loess agglomerated to larger particles with more complex shapes. Furthermore, the overall porosity of the originally undisturbed loess decreased, and large and medium–sized pores transformed into small pores and micropores. In contrast, the overall porosity of remolded loess increased. Finally, the results revealed that permeability coefficients of the undisturbed and remolded loess became closely related with eccentricity and porosity, respectively. This study provides a reference for preventing and governing the loess landslides induced by the freeze–thaw cycles and permeability reduction in construction on loess in seasonally frozen areas in Yili.
This research examined the drying–wetting cycles induced changes in undrained triaxial shear strength parameters and microstructural changes of Yili loess. The drying–wetting cycles were selected as 0, 1, 3, 5, 10, 20 and 30. Then, we collected Yili loess samples and performed unconsolidated-undrained (U-U) triaxial shearing tests to ascertain the variation in shear strength parameters with drying–wetting cycles. Additionally, we investigated the microstructural changes of Yili loess samples under drying–wetting cycles simultaneously via nuclear magnetic resonance (NMR) and scanning electron electroscopy (SEM). Finally, we established a grey correlation model between shear strength and microstructural parameters. Under U-U conditions, the prime finding was that the loess’s shear strength parameters changed overall after drying–wetting cycles; in particular, the internal friction angle φ dropped significantly while the cohesion c changed only slightly during cycles. For all the cycles, the first cycle gave the highest change. Soil morphology deterioration was evident at the initial stage of cycles. During the entire drying–wetting cyclic process, pore size distribution showed progressive variance from two-peak to a single-peak pattern, while both porosity and the fractal dimension of pores increased gradually towards stability. Soil particle morphology became slowly simple and reached the equilibrium state after 20 drying–wetting cycles. Under cyclic drying–wetting stress, the shear strength parameter changes were significantly correlated to microstructural modifications. This investigation was related to loess in the westerly region. The findings were expected to provide new insight into establishment of the connection between microstructure and macro stress–strain state of loess. To some extent, it provided a theoretical basis for the prevention and control of loess engineering geological disasters in Yili, Xinjiang and other areas with similar climate and soil types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.