The nature of the pseudogap phase of cuprate high-temperature superconductors is one of the most important unsolved problems in condensed matter physics. We studied the commencement of the pseudogap state at temperature T * using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally-doped Bi2201 crystals. We observe the coincident onset at T * of a particle-hole asymmetric antinodal gap, a non-zero Kerr rotation, and a change in the relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (T c ), entangled in an energy-momentum dependent fashion with the pre-existing pseudogap features.As complex oxides, cuprate superconductors belong to a class of materials which exhibit many broken-symmetry states; unravelling the relationship between superconductivity in the cuprates and other possible broken-symmetry states has been a major challenge of condensed matter physics. A possibly related issue concerns the nature of the pseudogap in the cuprates and its relationship with superconductivity. Angle-resolved photoemission spectroscopy (ARPES) studies have shown that the pseudogap develops below a temperature T * near the Brillouin zone boundary while preserving a gapless Fermi arc near the zone diagonal (1). A key issue is the extent to which the pseudogap is a consequence of superconducting fluctuations (2-5), which should exhibit a rough particle-hole symmetry, or another form of (incipient) order (6-12), which typically should induce particle-hole asymmetric spectral changes. Candidate orders include various forms of density wave, nematic or unconventional magnetic orders that break different combinations of lattice translational (6-8, 13-19), rotational (6, 9, 15, 17, 20-22), and time-reversal (7, 9, 23-26) symmetries.We have focused on crystals of nearly optimally-doped (OP) Pb 0.55 Bi 1.5 Sr 1.6 La 0.4 CuO 6+δ (PbBi2201, T c = 38 K, T * = 132 ± 8 K) (27), and combined the ARPES measurements of the evolution of the band structure over a wide range of temperature, momentum and energy, with high-precision measurements of the polar Kerr effect (PKE) and time-resolved reflectivity (TRR).Bi2201 was chosen to avoid the complications resulting from bilayer splitting and strong antinodal bosonic mode coupling inherent to Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) (1). Whereas ARPES is a surface probe, PKE enables us to monitor a bulk, thermodynamic (via the fluctuation-dissipation theorem) 2 property which has proven (28) to be a sensitive probe of the onset of a broken-symmetry state, and TRR gives complementary information on the bulk, near-equilibrium dynamics of the system. We will first analyze our ARPES data collected in different temperature regions. Above T * , PbBi2201 has a simple one-band band structure (right side of Fig. 1). For each cut in momentum space Fig. 1), the only distinct feature in the ...
Due to the novel optical and optoelectronic properties, two dimensional (2D) materials have received increasing interests for optoelectronics applications. Discovering new properties and functionalities of 2D materials are challenging yet promising. Here broadband polarization sensitive photodetectors based on few layer ReS 2 are demonstrated. The transistor based on few layer ReS 2 shows an n-type behavior with the mobility of about 40 cm 2 V -1 s -1 and on/off ratio of 10 5 . The polarization dependence of photoresponse is ascribed to the unique anisotropic in-plane crystal structure, consistent with the optical absorption 2 anisotropy. The linear dichroic photodetection with a high photoresponsivity reported here demonstrates a route to exploit the intrinsic anisotropy of 2D materials and the possibility to open up new ways for the applications of 2D materials for light polarization detection.
A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping-and temperaturedependence ARPES study of spectral gaps in Bi 2 Sr 2 CaCu 2 O 8+δ , covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p = 0.19 for the pseudogap phase and p = 0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below T c and exists p > 0.19 at higher temperatures. Our data imply a revised phase diagram that reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome.quantum materials | correlated electrons | laser ARPES T he momentum-resolved nature of angle-resolved photoemission spectroscopy (ARPES) makes it a key probe of the cuprates, the interesting phases of which have anisotropic momentumspace structure (1-4): both the d-wave superconducting gap and the pseudogap above T c have a maximum at the antinode [AN, near (π, 0)] and are ungapped at the node, although the latter phase also exhibits an extended ungapped arc (5-8). Ordering phenomena often result in gapping of the quasiparticle spectrum, and distinct quantum states produce spectral gaps with characteristic temperature, doping, and momentum dependence. These phenomena were demonstrated by recent ARPES experiments that argued that the pseudogap is a distinct phase from superconductivity based on their unique phenomenology (8-15): the pseudogap dominates near the AN (8, 11), and its magnitude increases with underdoping (11, 12), whereas near-nodal (NN) gaps have a different doping dependence and can be attributed to superconductivity because they close at T c (8, 12). Previous measurements focused on AN or intermediate (IM) momenta, but laser-ARPES, with its superior resolution and enhanced statistics, allows for precise gap measurements near the node where the gap is smallest. Our work is unique in its attention to NN momenta using laser-ARPES, and we demonstrate, via a single technique, that three distinct quantum phases manifest in different NN phenomenology as a function of doping. ResultsGaps at parallel cuts were determined by fitting symmetrized energy distribution curves (EDCs) at k F to a minimal model (16).The Fermi wavevector, k F , is defined by the minimum gap locus. Example spectra, raw and symmetrized EDCs at k F , and fits are shown for UD92 (underdoped, T c = 92) ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.