Objective: The present study was conducted to determine the role of gremlin during the development of posterior capsular opacification (PCO) via in vitro and in vivo experiments. Methods: The activation, roles and relationships of the BMPs/Smad1/5, MAPK, FAK and AKT signaling pathways in human lens epithelial cells (HLECs) after gremlin induction were detected by western blotting and real-time PCR. Wound-healing, transwell, capsular bag models and rat PCO models assays were used to test the effects of gremlin on HLECs' migration, proliferation, EMT-specific protein α-smooth muscle actin(α-SMA)and development of PCO in rats. Results: Our data showed that knockdown of the gremlin inhibited the development of PCO and reduced expression of α-SMA in rats. While gremlin did not alter the migration of HLECs, it increased the expression of pERK and p-AKT. Knockout of Smad2 or Smad3 inhibited the expression of pERK and p-AKT proteins induced by gremlin. Gremlin also reduced BMP4induced expression of the p-Smad1/5 protein. Finally, knockout of Smad1/5 increased gremlininduced expression of α-SMA, fibronectin and type I collagen (COL-1) in HLECs. Conclusion: These results suggested that gremlin contributed to the development of PCO by promoting LEC proliferation, activation of TGF-β/Smad, ERK and AKT signaling and inhibition of BMPs/Smad1/5 signaling. Furthermore, inhibiting gremlin effectively impaired both PCO development in rats and EMT in the lens capsule. Thus, our data suggest that gremlin might be a potential target for PCO.
Connective tissue growth factor (CTGF) is a crucial factor that plays a major role in the process of posterior capsule opacification (PCO). However, the effects of CTGF on the proliferation and migration of lens epithelial cells (LECs) and on the mechanism of the epithelial mesenchymal transition (EMT) and extracellular matrix (ECM) in human lens epithelial cells (HLECs) as well as the effects of shRNA-mediated CTGF knockdown on the development of PCO in rats remain unclear. In the present study, we found that CTGF promoted EMT, proliferation, migration and the expression of p-ERK1/2 protein in HLECs but exerted little effect on the expression of p-p38 and p-JNK1/2 proteins. MEK inhibitor U0126 effectively restrained the CTGF-induced expression of α-smooth muscle actin (α-SMA), fibronectin (Fn) and type I collagen (COL-1) in HLECs. CTGF knockdown effectively postponed the onset of PCO in the rats and significantly reduced the expression of α-SMA in the capsule. In conclusion, CTGF contributed to the development of PCO presumably by promoting proliferation, migration of LECs, EMT specific protein expression and ECM synthesis in HLECs, which is dependent on ERK signalling. Furthermore, blocking CTGF effectively inhibited PCO in the rats and the EMT specific protein expression in the lens capsule.
Macular fibrosis is a vital obstacle of vision acuity improvement of age‐related macular degeneration patients. This study was to investigate the effects of interleukin 2 (IL‐2) on epithelial‐mesenchymal transition (EMT), extracellular matrix (ECM) synthesis and transforming growth factor β2 (TGF‐β2) expression in retinal pigment epithelial (RPE) cells. 10 μg/L IL‐2 was used to induce fibrosis in RPE cells for various times. Western blot was used to detect the EMT marker α‐smooth muscle actin (α‐SMA), ECM markers fibronectin (Fn) and type 1 collagen (COL‐1), TGF‐β2, and the activation of the JAK/STAT3 and NF‐κB signaling pathway. Furthermore, JAK/STAT3 and NF‐κB signaling pathways were specifically blocked by WP1066 or BAY11‐7082, respectively, and the expression of α‐SMA, COL‐1, Fn and TGF‐β2 protein were detected. Wound healing and Transwell assays were used to measure cell migration ability of IL‐2 with or without WP1066 or BAY11‐7082. After induction of IL‐2, the expressions of Fn, COL‐1, TGF‐β2 protein were significantly increased, and this effect was correlated with IL‐2 treatment duration, while α‐SMA protein expression did not change significantly. Both WP1066 and BAY11‐7082 could effectively downregulate the expression of Fn, COL‐1 and TGF‐β2 induced by IL‐2. What's more, both NF‐κB and JAK/STAT3 inhibitors could suppress the activation of the other signaling pathway. Additionally, JAK/STAT3 inhibitor WP1066 and NF‐κB inhibitor BAY 11‐7082 could obviously decrease RPE cells migration capability induced by IL‐2. IL‐2 promotes cell migration, ECM synthesis and TGF‐β2 expression in RPE cells via JAK/STAT3 and NF‐κB signaling pathways, which may play an important role in proliferative vitreoretinopathy.
Purpose Cataract, a clouding of the intraocular lens, is the leading cause of blindness. The lens-expressed long noncoding RNA OIP5-AS1 was upregulated in lens epithelial cells from patients with cataracts, suggesting its pathogenic role in cataracts. We investigated the regulatory role of OIP5-AS1 in the development of cataracts as well as potential RNA binding proteins, downstream target genes, and upstream transcription factors. Methods Clinical capsules and ex vivo and in vitro cataract models were used to test OIP5-AS1 expression. Cell apoptosis was detected using Western blots, JC-1 staining, and flow cytometry. Ribonucleoprotein immunoprecipitation-qPCR was performed to confirm the interaction of OIP5-AS1 and POLG . Chromatin immunoprecipitation-qPCR was used to determine the binding of TFAP2A and the OIP5-AS1 promoter region. Results OIP5-AS1 was upregulated in cataract lenses and B3 cells under oxidative stress. OIP5-AS1 knockdown protected B3 cells from H 2 O 2 -induced apoptosis and alleviated lens opacity in the ex vivo cataract model. HuR functioned as a scaffold carrying OIP5-AS1 and POLG mRNA and mediated the decay of POLG mRNA. POLG was downregulated in the cataract lens and oxidative-stressed B3 cells, and POLG depletion decreased the mtDNA copy number and MMP, increased reactive oxygen species production, and sensitized B3 cells to oxidative stress-induced apoptosis. POLG overexpression reversed these effects. TFAP2A bound the OIP5-AS1 promoter and contributed to OIP5-AS1 expression. Conclusions We demonstrated that OIP5-AS1 , activated by TFAP2A , contributed to cataract formation by inhibiting POLG expression mediated by HuR, thus leading to increased apoptosis of lens epithelial cells and aggravated lens opacity, suggesting that OIP5-AS1 is a potential target for cataract treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.