Bacterial infections are one of the biggest threats to wound healing. Despite significant efforts in wound condition monitoring and treatment, significant challenges remain in real‐time wound monitoring and timely treatment. Herein, a kind of hydrogel with dual functions, which can not only quickly diagnose wound bacterial infection but also provide timely and effective treatment is developed. First, Carborxymethy chitosan (CMCS)‐Protocatechualdehyde (PA)@Fe hydrogels with double dynamic bonds are prepared by chelating PA@Fe with CMCS. Second, the pH‐sensitive Polydimethylsiloxane (PDMS) optical fibers are integrated into the CMCS‐PA@Fe hydrogels to obtain the pH‐sensitive optical fiber/CMCS‐PA@Fe hydrogels that exhibit good real‐time monitoring of the wound healing process. The tissue adhesion and self‐healing properties of the pH‐sensitive optical fiber/CMCS‐PA@Fe hydrogels can adapt to the movement and stretching of the skin. Meanwhile, with the assistance of the photothermal effect, the hydrogels have a high antibacterial effect (>99.9%). In addition, the pH‐sensitive optical fiber/CMCS‐PA@Fe hydrogels also show an excellent therapeutic effect in the wound infection model. Moreover, reliable and timely wound pH information can be sent to intelligent devices through microcomputers to monitor the healing status. Overall, the pH‐sensitive optical fiber/CMCS‐PA@Fe hydrogels provide an entirely new platform for developing smart, real‐time diagnostics and timely wound treatment.
The application of piezoelectric nanoparticles with shape memory polymer (SMP) to 3D‐printed piezoelectric scaffolds for bone defect repair is an attractive research direction. However, there is a significant difference in dielectric constants between the piezoelectric phase and polymer phase, limiting the piezoelectric property. Therefore, novel piezoelectric acrylate epoxidized soybean oil (AESO) scaffolds doped with piezoelectric Ag‐TMSPM‐pBT (ATP) nanoparticles (AESO‐ATP scaffolds) are prepared via digital light procession 3D‐printing. The Ag‐TMSPM‐pBT nanoparticles improve the piezoelectric properties of the AESO scaffolds by TMSPM covalent functionalization and conductive Ag nanoparticles. The AESO scaffolds doped with 10 wt% Ag‐TMSPM‐pBT nanoparticles (AESO‐10ATP scaffolds) exhibit promising piezoelectrical properties, with a piezoelectric coefficient (d33) of 0.9 pC N−1 and an output current of 146.4 nA, which are close to the piezoelectric constants of bone tissue. In addition, these scaffolds exhibit good shape memory function and can quickly recover their original shape under near‐infrared (NIR) light irradiation. The results of osteogenesis capability evaluation indicate that the AESO‐10ATP scaffolds can promote osteogenic differentiation of BMSCs in vitro and bone defect repair in vivo, indicating the 3D‐printed AESO‐10ATP piezoelectric scaffolds may have great application potential for bone regeneration.
Concurrent treatment of tumor recurrence and bone defects after surgical resection of osteosarcoma remains a clinical challenge. Combination therapy based on local drug delivery systems shows great promise in the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.