Real-time hybrid shaking table test for high-speed maglev vehicle–bridge interaction (VBI) system is an important method to study dynamic response of the system. Numerical experiments are usually conducted in advance to guarantee the test performed smoothly. This paper presents a novel moving load integration method combined with a truncated bridge model for fast calculation of bridge responses, and presents a framework for performing numerical experiment of a real-time hybrid test of VBI system. A realistic numerical experiment is conducted on a real-time simulator, i.e. xPC Target, integrating three commercial software, i.e. SIMPACK, ANSYS, and MATLAB-Simulink[Formula: see text], to model a real TR08 single-carriage maglev train, a 5-spans bridge and 28 shaking tables, respectively. The driving speed is 400–600[Formula: see text]km/h and the time step size in the test is 1/256[Formula: see text]s. The accuracy of moving load integration method with truncated bridge model is verified, the effects of speed on the dynamic responses of VBI systems are studied, the time delay of shaking tables and compensation algorithm is investigated, and the effects of local nonlinearity of the bridge on system responses are studied. This paper provides a practical method and valuable reference for the real-time hybrid shaking table test of vehicle–bridge coupled systems.
In recent decades, precast concrete buildings have undergone significant development, attracting considerable academic attention to their mechanical performances. Unlike cast-in-situ buildings, precast buildings are assembled on site by connecting precast components using mechanical devices or on-site casted joints, which makes the connections particularly important for overall structural performances. This study presents a comprehensive review of the mechanical performances of precast buildings, with a specific focus on various types of connections and their structural properties. This study reviews the mechanical performances of building connections using dry, wet, and/or hybrid methods between pre-manufactured components, e.g., beam–column joints, wall–panel connections, and column/wall–foundation connections. Both experimental and numerical investigations are reviewed. The paper provides a valuable reference regarding the mechanical performances of precast concrete buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.