By leveraging deep learning technologies, data-driven-based approaches have reached great success with the rapid increase of data generated for medical applications. However, security and privacy concerns are obstacles for data providers in many sensitive data-driven scenarios, such as rehabilitation and 24 h on-the-go healthcare services. Although many federated learning (FL) approaches have been proposed with DNNs for medical applications, these works still suffer from low usability of data due to data incompleteness, low quality, insufficient quantity, sensitivity, etc. Therefore, we propose a ring-topology-based decentralized federated learning (RDFL) scheme for deep generative models (DGM), where DGM is a promising solution for solving the aforementioned data usability issues. Our RDFL schemes provide communication efficiency and maintain training performance to boost DGMs in target tasks compared with existing FL works. A novel ring FL topology and a map-reduce-based synchronizing method are designed in the proposed RDFL to improve the decentralized FL performance and bandwidth utilization. In addition, an inter-planetary file system (IPFS) is introduced to further improve communication efficiency and FL security. Extensive experiments have been taken to demonstrate the superiority of RDFL with either independent and identically distributed (IID) datasets or non-independent and identically distributed (Non-IID) datasets.
Skeleton-based human action recognition is a longstanding challenge due to its complex dynamics. Some fine-grain details of the dynamics play a vital role in classification. The existing work largely focuses on designing incremental neural networks with more complicated adjacent matrices to capture the details of joints relationships. However, they still have difficulties distinguishing actions that have broadly similar motion patterns but belong to different categories. Interestingly, we found that the subtle differences in motion patterns can be significantly amplified and become easy for audience to distinct through specified view directions, where this property haven't been fully explored before. Drastically different from previous work, we boost the performance by proposing a conceptually simple yet effective Multi-view strategy that recognizes actions from a collection of dynamic view features. Specifically,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.