Although most existing linkable ring signature schemes on lattice can effectively resist quantum attacks, they still have the disadvantages of excessive time and storage overhead. This paper constructs an identity-based linkable ring signature (LRS) scheme over NTRU lattice by employing the technologies of trapdoor generation and rejection sampling. The security of this scheme relies on the small integer solution (SIS) problem on NTRU lattice. We prove that this scheme has unconditional anonymity, unforgeability, and linkability under the random oracle model (ROM). Through the performance analysis, this scheme has a shorter size of public/private keys, and when the number of ring members is small (such as
N
≤
8
), this scheme has a shorter signature size compared with other existing latest lattice-based LRS schemes. The computational efficiency of signature has also been further improved since it only involves multiplication in the polynomial ring and modular operations of small integers. Finally, we implemented our scheme and other similar schemes, and it is shown that the time for the signature generation and verification of this scheme decreases roughly by 44.951% and 33.503%, respectively.
The development of edge computing and Internet of Things technology has brought convenience to our lives, but the sensitive and private data collected are also more vulnerable to attack. Aiming at the data privacy security problem of edge-assisted Internet of Things, an outsourced mutual Private Set Intersection protocol is proposed. The protocol uses the ElGamal threshold encryption algorithm to rerandomize the encrypted elements to ensure all the set elements are calculated in the form of ciphertext. After that, the protocol maps the set elements to the corresponding hash bin under the execution of two hash functions and calculates the intersection in a bin-to-bin manner, reducing the number of comparisons of the set elements. In addition, the introduction of edge servers reduces the computational burden of participating users and achieves the fairness of the protocol. Finally, the IND-CPA security of the protocol is proved, and the performance of the protocol is compared with other relevant schemes. The evaluation results show that this protocol is superior to other related protocols in terms of lower computational overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.