Various significant issues in cloud computing, such as service provision, service matching, and service assessment, have attracted researchers’ attention recently. Quality of service (QoS) plays an increasingly important role in the provision of cloud-based services, by aiming for the seamless and dynamic integration of cloud-service components. In this paper, we focus on QoS-satisfied predictions about the composition of cloud-service components and present a QoS-satisfied prediction model based on a hidden Markov model. In providing a cloud-based service for a user, if the user’s QoS cannot be satisfied by a single cloud-service component, component composition should be considered, where its QoS-satisfied capability needs to be proactively predicted to be able to guarantee the user’s QoS. We discuss the proposed model in detail and prove some aspects of the model. Simulation results show that our model can achieve high prediction accuracies.
In WSNs, routing algorithms need to handle dynamical changes of network topology, extra overhead, energy saving, and other requirements. Therefore, routing in WSNs is an extremely interesting and challenging issue. In this paper, we present a novel bio-inspired trusted routing scheme (B-iTRS) based on ant colony optimization (ACO) and Physarum autonomic optimization (PAO). For trust assessment, B-iTRS monitors neighbors’ behavior in real time, receives feedback from Sink, and then assesses neighbors’ trusts based on the acquired information. For routing scheme, each node finds routes to the Sink based on ACO and PAO. In the process of path finding, B-iTRS senses the load and trust value of each node and then calculates the link load and link trust of the found routes to support the route selection. Moreover, B-iTRS also assesses the route based on PAO to maintain the route table. Simulation results show how B-iTRS can achieve the effective performance compared to existing state-of-the-art algorithms.
Lai JB, Wang HQ, Liu XW et al. WNN-based network security situation quantitative prediction method and its optimization. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 23(2): 222-
AbstractThe accurate and real-time prediction of network security situation is the premise and basis of preventing intrusions and attacks in a large-scale network. In order to predict the security situation more accurately, a quantitative prediction method of network security situation based on Wavelet Neural Network with Genetic Algorithm (GAWNN) is proposed. After analyzing the past and the current network security situation in detail, we build a network security situation prediction model based on wavelet neural network that is optimized by the improved genetic algorithm and then adopt GAWNN to predict the non-linear time series of network security situation. Simulation experiments prove that the proposed method has advantages over Wavelet Neural Network (WNN) method and Back Propagation Neural Network (BPNN) method with the same architecture in convergence speed, functional approximation and prediction accuracy. What is more, system security tendency and laws by which security analyzers and administrators can adjust security policies in near real-time are revealed from the prediction results as early as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.