Previous findings suggested that a four-protein complex, including sterol-regulatory element-binding protein (SREBP), SREBP-cleavage-activating protein (SCAP), insulin-induced gene (INSIG) and progesterone receptor membrane component 1 (PGRMC1), within the endoplasmic reticulum appears to be an important regulator responsible for atypical antipsychotic drug (AAPD)-induced lipid disturbances. In the present study, effects of typical antipsychotic drug and AAPDs as well as treatment outcome of steroid antagonist mifepristone (MIF) on the PGRMC1/INSIG/SCAP/SREBP pathway were investigated in rat liver using real-time quantitative polymerase chain reaction (qPCR) and western blot analysis. In addition, serum triacylglycerol, total cholesterol, free fatty acids and various hormones including progesterone, corticosterone and insulin were measured simultaneously. Following treatment with clozapine or risperidone, both lipogenesis and cholesterogenesis were enhanced via inhibition of PGRMC1/INSIG-2 and activation of SCAP/SREBP expressions. Such metabolic disturbances, however, were not demonstrated in rats treated with aripiprazole (ARI) or haloperidol (HAL). Moreover, the add-on treatment of MIF was effective in reversing the AAPD-induced lipid disturbances by upregulating the expression of PGRMC1/INSIG-2 and subsequent downregulation of SCAP/SREBP. Taken together, our findings suggest that disturbances in lipid metabolism can occur at an early stage of AAPD treatment before the presence of weight gain. Such metabolic defects can be modified by an add-on treatment of steroid antagonist MIF enhancing the PGRMC1 pathway. Thus, it is likely that PGRMC1/INSIG-2 signaling may be a therapeutic target for AAPD-induced weight gain.
BackgroundThe NLRP3 inflammasome activation and neuroinflammation are known to be involved in the pathology of depression, whereas autophagy has multiple effects on immunity, which is partly mediated by the regulation of inflammasome and clearance of proinflammatory cytokines. Given the emerging evidence that autophagy dysfunction plays an essential role in depression, it is very likely that autophagy may interact with the inflammatory process in the development and treatment of depression. Salvianolic acid B (SalB), a naturally occurring compound extracted from Salvia miltiorrhiza, contains anti-inflammatory and antidepression properties and has recently been proven to modulate autophagy. In this study, we sought to investigate whether autophagy is involved in the inflammation-induced depression and the antidepressant effects of SalB.MethodsThe effects of prolonged lipopolysaccharide (LPS) treatment and SalB administration on behavioral changes, neuroinflammation, autophagic markers and NLRP3 activation in rat hippocampus were determined by using behavioral tests, real-time PCR analysis, western blot, and immunostaining.ResultsOur data showed that periphery immune challenge by LPS for 2 weeks successfully induced the rats to a depression-like state, accompanied with enhanced expression of pro-inflammatory cytokines and NLRP3 inflammasome activation. Interestingly, autophagic markers, including Beclin-1, and the ratio of LC3II to LC3I were suppressed following prolonged LPS exposure. Meanwhile, co-treatment with SalB showed robust antidepressant effects and ameliorated the LPS-induced neuroinflammation. Additionally, SalB restored the compromised autophagy and overactivated NLRP3 inflammasome in LPS-treated rats.ConclusionsCollectively, these data suggest that autophagy may interact with NLRP3 activation to contribute to the development of depression, whereas SalB can promote autophagy and induce the clearance of NLRP3, thereby resulting in neuroprotective and antidepressant actions.
Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use can cause neurobiological side-effects associated with depression. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), the essential fatty acids found in fish oil, possess neuroprotecitve and antidepressant activities. Thus, the aim of this study was to explore the potential protective effects of ω-3 PUFAs against DOX-induced behavioral changes and neurotoxicity. ω-3 PUFAs were given daily by gavage (1.5 g/kg) over three weeks starting seven days before DOX administration (2.5 mg/kg). Open-field test (OFT) and forced swimming test (FST) were conducted to assess exploratory activity and despair behavior, respectively. Our data showed that ω-3 PUFAs supplementation significantly mitigated the behavioral changes induced by DOX. ω-3 PUFAs pretreatment also alleviated the DOX-induced neural apoptosis. Meanwhile, ω-3 PUFAs treatment ameliorated DOX-induced oxidative stress in the prefrontal cortex and hippocampus. Additionally, gene expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and the protein levels of NF-κB and iNOS were significantly increased in brain tissues of DOX-treated group, whereas ω-3 PUFAs supplementation significantly attenuated DOX-induced neuroinflammation. In conclusion, ω-3 PUFAs can effectively protect against DOX-induced depressive-like behaviors, and the mechanisms underlying the neuroprotective effect are potentially associated with its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.