Toll-like receptor 3 (TLR3), a member of the pathogen recognition receptors, is widely expressed in various cells and has been shown to activate immune signaling pathways by recognizing viral double-stranded RNA. Recently, it was reported that the activation of TLR3 induced apoptosis in some cells, but the detailed molecular mechanism is not fully understood. In this study, we found that in endothelial cells polyinosinic-polycytidylic acid (poly(I-C)) induced dose-and time-dependent cell apoptosis, which was elicited by TLR3 activation, as TLR3 neutralization and down-regulation repressed the apoptosis. Poly(I-C) induced the activation of both caspases 8 and 9, indicating that TLR3 triggered the signaling of both the extrinsic and intrinsic apoptotic pathways. Poly(I-C) up-regulated tumor necrosis factor-related apoptosis-inducing ligand and its receptors, death receptors 4/5, resulting in initiating the extrinsic pathway. Furthermore, poly(I-C) down-regulated anti-apoptotic protein, B cell lymphoma 2 (Bcl-2), and up-regulated Noxa, a key Bcl-2 homology 3-only antagonist of Bcl-2, leading to the priming of the intrinsic pathway. A p53-related protein, the transactivating p63 isoform ␣ (TAp63␣), was induced by TLR3 activation and contributed to the activation of both the intrinsic and extrinsic apoptotic pathways. Both the cells deficient in p63 gene expression by RNA interference and cells that overexpressed the N-terminally truncated p63 isoform ␣ (⌬Np63␣), a dominant-negative variant of TAp63␣, by gene transfection, survived TLR3 activation. Taken together, TAp63␣ is a crucial regulator downstream of TLR3 to induce cell death via death receptors and mitochondria.
BackgroundGenome-wide association studies have identified that genetic variants in 8q24 confer susceptibility to colorectal cancer (CRC). Recently, a novel lncRNA (PRNCR1) that located in the 8q24 was discovered. Single nucleotide polymorphisms (SNPs) in the lncRNAs may influence the process of splicing and stability of mRNA conformation, resulting in the modification of its interacting partners. We hypothesized that SNPs in the lncRNA PRNCR1 may be related to the risk of CRC.MethodsWe conducted a case–control study and genotyped five tag SNPs in the lncRNA PRNCR1 in 908 subjects including 313 cases with CRC and 595 control subjects using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) assay.ResultsIn overall analyses, we found that the rs13252298 and rs1456315 were associated with significantly decreased risks of CRC. In stratification analyses, we found that CRC patients carrying the rs1456315G were likely to have a tumor size of greater than 5 cm (G vs. A: adjusted OR = 1.56, 95% CI: 1.10-2.23). Additionally, patients with the rs7007694C and rs16901946G had decreased risks to develop poorly differentiated CRC, whereas patients with the rs1456315G had an increased risk to develop poorly differentiated CRC.ConclusionThese findings suggest that SNPs in the lncRNA PRNCR1 may contribute to susceptibility to CRC.
The metastasis-associated lung adenocarcinoma transcript 1(MALAT1), a member of the long non-coding RNA (lncRNA) family, has been reported to be highly enriched in many kinds of cancers and to be a metastasis marker and a prognostic factor. In this study, we found that MALAT1 expression levels were significantly increased in cervical cancer (CC) cells and tissues. The down-regulation of MALAT1 by shRNA in CC cells inhibited the invasion and metastasis in vitro and in vivo. Microarray analysis showed that the knockdown of MALAT1 up-regulated the epithelial markers E-cadherin and ZO-1, and down-regulated the mesenchymal markers β-catenin and Vimentin. This regulation was further confirmed by subsequent observation from RT-PCR, western blot, and immunofluorescence results. Meanwhile, the transcription factor snail, which functions to modulate epithelial-mesenchymal transition (EMT), was also down-regulated at both transcript and protein levels by MALAT1 down-regulation. In addition, we found that MALAT1 expression levels were positively related to HPV infection in cervical epithelial tissues by microarray analysis. Taken together, these results suggest that MALAT1 functions to promote cervical cancer invasion and metastasis via induction of EMT, and it may be a target for the prevention and therapy of cervical cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.