The evolution law of lateral abutment pressure under the condition of fully mechanized mining in shallow coal seam is studied using the change process of coal pillar stress in disturbed section as the research object. The results of physical simulation experiment show that, after coal mining, due to the collapse of coal seam roof, the overlying strata of key layer will disturb the section coal pillar to different degrees, and the sudden change of degrees of abutment pressure near the coal wall reaches the maximum. Affected by the energy released by the fracture of key stratum, the stress mutation area shifts to the coal wall at a deeper level and the range of plastic zone increases. From the perspective of the numerical simulation, according to the change characteristics of coal pillar abutment pressure in the mining process, the dynamic load process of complex roof strata is divided into three stages: the stage not affected by mining, the stage of dynamic load action, and the stage of static load. In the first stage, the lateral abutment pressure is only affected by the roadway mining, causing stress concentration in the coal body. The stress concentration coefficient is small, and the supporting stress is stable. In the second stage, with the advance of the working face, the coal seam load changes continuously owing to the movement of overlying rock in the goaf, and the lateral abutment pressure changes evidently under the influence of dynamic load. In the third stage, the overlying load forms stress concentration in the coal seam and continuously transfers to the coal wall at a deeper level, which increases the limit equilibrium area of coal body. During this period, the range of plastic zone still increases at a certain rate for a period of time and finally tends to be stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.