The commonly-used large-scale knowledge bases have been facing challenges in open domain question answering tasks which are caused by the loose knowledge association and weak structural logic of triplet-based knowledge. To find a way out of this dilemma, this work proposes a novel metaknowledge enhanced approach for open domain question answering. We design an automatic approach to extract metaknowledge and build a metaknowledge network from Wiki documents. For the purpose of representing the directional weighted graph with hierarchical and semantic features, we present an original graph encoder GE4MK to model the metaknowledge network. Then, a metaknowledge enhanced graph reasoning model MEGr-Net is proposed for question answering, which aggregates both relational and neighboring interactions comparing with R-GCN and GAT. Experiments have proved the improvement of metaknowledge over main-stream triplet-based knowledge. We have found that the graph reasoning models and pre-trained language models also have influences on the metaknowledge enhanced question answering approaches.
The triple-based knowledge in large-scale knowledge bases is most likely lacking in structural logic and problematic of conducting knowledge hierarchy. In this paper, we introduce the concept of metaknowledge to knowledge engineering research for the purpose of structural knowledge construction. Therefore, the Metaknowledge Extraction Framework and Document Structure Tree model are presented to extract and organize metaknowledge elements (titles, authors, abstracts, sections, paragraphs, etc.), so that it is feasible to extract the structural knowledge from multi-modal documents. Experiment results have proved the effectiveness of metaknowledge elements extraction by our framework. Meanwhile, detailed examples are given to demonstrate what exactly metaknowledge is and how to generate it. At the end of this paper, we propose and analyze the task flow of metaknowledge applications and the associations between knowledge and metaknowledge.
The commonly-used large-scale knowledge bases have been facing challenges in open domain question answering tasks which are caused by the loose knowledge association and weak structural logic of triplet-based knowledge. To find a way out of this dilemma, this work proposes a novel metaknowledge enhanced approach for open domain question answering. We design an automatic approach to extract metaknowledge and build metaknowledge network from Wiki documents. For the purpose of representing the directional weighted graph with hierarchical and semantic features, we present an original graph encoder GE4MK to model the metaknowledge network. Then a metaknowledge enhanced graph reasoning model MEGr-Net is proposed for question answering, which aggregates both relational and neighboring interactions comparing with R-GCN and GAT. Experiments have proved the improvement of metaknowledge over main-stream triplet-based knowledge. We have found that the graph reasoning models and pre-trained language models also have influences on the metaknowledge enhanced question answering approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.