Ischemic stroke is one of the leading causes of brain disease, with high morbidity, disability, and mortality. MicroRNAs (miRNAs) have been identified as vital gene regulators in various types of human diseases. Accumulating evidence has suggested that aberrant expression of miRNAs play critical roles in the pathologies of ischemic stroke. Yet, the precise mechanism by which miRNAs control cerebral ischemic stroke remains unclear. In the present study, we explored whether miR-455 suppresses neuronal death by targeting TRAF3 in cerebral ischemic stroke. The expression levels of miR-455 and TRAF3 were detected by quantitative real-time polymerase chain reaction and Western blot. The role of miR-455 in cell death caused by oxygen–glucose deprivation (OGD) was assessed using Cell Counting Kit-8 (CCK-8) assay. The influence of miR-455 on infarct volume was evaluated in mouse brain after middle cerebral artery occlusion (MCAO). Bioinformatics softwares and luciferase analysis were used to find and confirm the targets of miR-455. The results showed that the expression levels of miR-455 significantly decreased in primary neuronal cells subjected to OGD and mouse brain subjected to MCAO. In addition, forced expression of miR-455 inhibited neuronal death and weakened ischemic brain infarction in focal ischemia-stroked mice. Furthermore, TRAF3 was proved to be a direct target of miR-455, and miR-455 could negatively suppress TRAF3 expression. Biological function analysis showed that TRAF3 silencing displayed the neuroprotective effect in ischemic stroke and could enhance miR-455-induced positive impact on ischemic injury both in vitro and in vivo. Taken together, miR-455 played a vital role in protecting neuronal cells from death by downregulating TRAF3 protein expression. These findings may represent a novel latent therapeutic target for cerebral ischemic stroke.
Acute intracerebral hemorrhage (ICH) complicated by hyperglycemia is associated with aggravation of post-stroke inflammation, leading to exacerbation of brain edema and predicting poor neurological outcomes and higher mortality of patients. Osteopontin (OPN) is a neuroprotective glycoprotein, which is able to attenuate brain injury induced by hemorrhagic stroke. In the current study we investigated whether OPN will decrease the inflammatory post-ICH response as well as attenuate brain edema and neurological deficits in hyperglycemic rats. We employed a collagenase model of ICH on male Sprague-Dawley rats (n = 148) rats and 50% of Dextrose was injected intraperitoneally (i.p) 3 h after ICH (ICH + HG). Intranasal administration of recombinant OPN (rOPN) was performed 1 h after ICH. The development of brain injury was evaluated by brain water content (BWC) and neurological deficits, western blot and immunohistochemistry study. Small interfering ribonucleic acid (siRNA) for integrin-β1 receptor and a JAK2 agonist, Coumermycin A1 (C-A1), were used for detailed investigation of the molecular pathway. The administration of OPN (3 μg) significantly improved neurobehavior and increased expression of OPN and integrin-β1 receptor in the brain followed with decrease of neutrophil infiltration, JAK2, STAT1, TNF-a, IL-1b, MMP-9 and brain edema in the ICH + HG + OPN rats compared with ICH + HG rats. The effects of OPN were reversed by the intervention of intergrin-β1 siRNA and C-A1. In conclusion, rOPN attenuated ICH-induced brain inflammation in hyperglycemic rats, leading to attenuation of brain edema and improving neurological functions. Effects of rOPN were mediated at least partly by integrin-β1 induced inhibition of JAK2/STAT1 pathway.
Complement-mediated inflammation plays a vital role in intracerebral hemorrhage (ICH), implicating pro-inflammatory factor interleukin-1beta (IL-1β) secretion. Brain samples and contralateral hemiencephalon were all collected and detected by Western blot. NLRP3 expression was located by dual immunofluorescence staining at 1, 3, and 5 days post-ICH. Brain water content was examined post-ICH. The neural deficit scores were evaluated by observers blindly. ILs were detected by ELISA. SiRNAs targeting NLRP3 (siNLRP3), siASC, and siControl were injected to inhibit NLRP3 function. To test the complement activation via Nod-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), normal rabbit complement (NRC) was injected with lipopolysaccharide (LPS) to facilitate the complement function. As a result, complement 3a (C3a) and complement 5a (C5a) were upregulated during the ICH-induced neuroinflammation, and ablation of C3 attenuates ICH-induced IL-1β release. Though the LPS rescues the neuroinflammation in the ICH model, C3 deficiency attenuates the LPS-induced inflammatory effect. The NLRP3 inflammasome was activated after ICH and was located in the microglial cell of the mouse brain, which exhibits a time-dependent manner. However, the number of NLRP3/Iba-1 dual-labeled cells in the C3 group is less than that in the WT group in each time course, respectively. IL-1β and IL-18 released in perihematoma tissue, caspase-1-p20, brain water content, and behavioral outcomes were attenuated in the siNLRP3 and siASC groups than in the siControl and ICH groups. We also found that 5% of complement supplement enhances ICH-induced IL-1β release, while NLRP3 and ASC inhibition attenuates it. In conclusion, complement-induced ICH neuroinflammation depended on NLRP3 activation, which facilities LPS- and ICH-induced neuroinflammation, and NLRP3 is required for ICH-induced inflammation.
SummaryIntracerebral haemorrhage (ICH) is a subtype of stroke that associated with neurological dysfunction and inflammation, which may be ameliorated by a neuroprotective strategy targeting the complement cascade. The protective effect of C5a-receptor antagonist (PMX53) solely and in combination with thrombin antagonist (argatroban) was investigated in the ICH mouse model, respectively. Adult male C57BL/6J wild-type (WT) mice and C3 -/-mice were randomized to receive PMX53/argatroban 1, 3 and 5 days after ICH. A double injection technique was used to infuse 25 μl of autologous whole blood into the right striatum. Mice in the sham group received only needle insertion. Brain water content and mRNA of inflammatory factors were measured on the first, third and fifth days after ICH, respectively. Neurological dysfunction was assessed using a 28-point neurological scoring system in the three cohorts, namely, on days
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.