The histone acetyltransferase MOF (KAT8) is mainly involved in the acetylation of histone H4 at lysine 16 (H4K16) and some non‐histone proteins. The MOF expression level is significantly reduced in many cancers, however the biological function of MOF and its underlying mechanism are still elusive in hepatocellular carcinoma (HCC). Estrogen receptor α (ERα) has been considered as a tumor suppressor in HCC. Here, we demonstrated that MOF expression is significantly reduced in HCC samples, and is positively correlated with that of ERα. MOF interacts with ERα, and participates in acetylation of ERα at K266, K268, K299, thereby inhibiting ERα ubiquitination to maintain the stability of ERα. In addition, MOF participates in the upregulation of ERα‐mediated transactivation. Depletion of MOF significantly promotes cell growth, migration, and invasion in HCC cell lines. Taken together, our results provide new insights to understand the mechanism underlying the modulation function of MOF on ERα action in HCC, suggesting that MOF might be a potential therapeutic target for HCC.
Hepatocellular carcinoma (HCC) is a common solid tumor with high rate of recurrence and mortality. Anti-angiogenesis drugs have been used for the therapy of HCC. However, anti-angiogenic drug resistance commonly occurs during HCC treatment. Thus, identification of a novel VEGFA regulator would be better understanding for HCC progression and anti-angiogenic therapy resistance. Ubiquitin specific protease 22 (USP22) as a deubiquitinating enzyme, participates in a variety of biological processes in numerous tumors. While the molecular mechanism underlying the effects of USP22 on angiogenesis is still needed to be clarified. Here, our results demonstrated that USP22 acts as a co-activator of VEGFA transcription. Importantly, USP22 is involved in maintenance of ZEB1 stability via its deubiquitinase activity. USP22 was recruited to ZEB1-binding elements on the promoter of VEGFA, thereby altering histone H2Bub levels, to enhance ZEB1-mediated VEGFA transcription. USP22 depletion decreased cell proliferation, migration, Vascular Mimicry (VM) formation, and angiogenesis. Furthermore, we provided the evidence to show that knockdown of USP22 inhibited HCC growth in tumor-bearing nude mice. In addition, the expression of USP22 is positively correlated with that of ZEB1 in clinical HCC samples. Our findings suggest that USP22 participates in the promotion of HCC progression, if not all, at least partially via up-regulation of VEGFA transcription, providing a novel therapeutic target for anti-angiogenic drug resistance in HCC.
Endocrine resistance is a crucial challenge in estrogen receptor alpha (ERα)-positive breast cancer (BCa) therapy. Aberrant alteration in modulation of E2/ERα signaling pathway has emerged as the putative contributor for endocrine resistance in BCa. Thus, identification the efficient ERα cofactor remains necessary for finding a potential therapeutic target for endocrine resistance. Herein, we have demonstrated that Myb like, SWIRM and MPN domains 1 (MYSM1) as a histone deubiquitinase is a novel ERα co-activator with established Drosophila experimental model. Our results showed that MYSM1 participated in up-regulation of ERα action via histone and non-histone deubiquitination. We provided the evidence to show that MYSM1 was involved in maintenance of ERα stability via ERα deubiquitination. Furthermore, silencing MYSM1 induced enhancement of histone H2A ubiquitination as well as reduction of histone H3K4me3 and H3Ac levels at cis regulatory elements on promoter of ERα-regulated gene. In addition, MYSM1 depletion attenuated cell proliferation/growth in BCa-derived cell lines and xenograft models. Knockdown of MYSM1 increased the sensitivity of antiestrogen agents in BCa cells. MYSM1 was highly expressed in clinical BCa samples, especially in aromatase inhibitor (AI) non-responsive tissues. These findings clarify the molecular mechanism of MYSM1 as an epigenetic modifier in regulation of ERα action and provide a potential therapeutic target for endocrine resistance in BCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.