In the medical image analysis domain, medical image segmentation has a significant impact on the quantitative analysis of organ or tissue function, as the first and critical component of diagnosis and treatment pipeline. In this paper, a dense R‐CNN segmentation model based on dual‐attention are proposed for medical images multi‐target instance segmentation. The model combines channel and spatial attention mechanism to extract image features and fuse multi‐scale feature information hierarchically. It combines up‐sampling strategies such as dilated convolution and bilinear interpolation to strengthen the distinguishability between multi‐target instances and pixel‐level features in other regions. The multi‐target detection mechanism of R‐CNN is combined with the multi‐scale feature extraction and fusion ability of dense convolution network. In the encoding stage, the multi‐scale hybrid bottleneck module and deformable convolution are introduced to extract more accurate structural feature information and increase the receptive‐field. In the decoding stage, the bilinear interpolation and the adaptive hierarchical fusion mechanism are used to strengthen the distinguishability between the target region and other regions, and improve the accuracy of instance segmentation. Taking cardiac MRI segmentation as an example, the left and right ventricles, and left ventricular myocardium are selected as segmentation targets. The pixel accuracy is 90.82%, the class pixel accuracy is 87.91%, the mean intersection‐over‐union is 81.52%, the Dice coefficient is 89.82%, and Hausdorff distance is 9.2, which is improved compared with other methods. It verifies the accuracy and applicability of the proposed method for multi‐target instance segmentation of medical images.
Aiming at the medical images segmentation with low-recognition and high background noise, a deep convolution neural network image segmentation model based on fuzzy attention mechanism is proposed, which is called FA-SegNet. It takes SegNet as the basic framework. In the down-sampling module for image feature extraction, a fuzzy channel-attention module is added to strengthen the discrimination of different target regions. In the up-sampling module for image size restoration and multi-scale feature fusion, a fuzzy spatial-attention module is added to reduce the loss of image details and expand the receptive field. In this paper, fuzzy cognition is introduced into the feature fusion of CNNs. Based on the attention mechanism, fuzzy membership is used to re-calibrate the importance of the pixel value in local regions. It can strengthen the distinguishing ability of image features, and the fusion ability of the contextual information, which improves the segmentation accuracy of the target regions. Taking MRI segmentation as an experimental example, multiple targets such as the left ventricles, right ventricles, and left ventricular myocardium are selected as the segmentation targets. The pixels accuracy is 92.47%, the mean intersection to union is 86.18%, and the Dice coefficient is 92.44%, which are improved compared with other methods. It verifies the accuracy and applicability of the proposed method for the medical images segmentation, especially the targets with low-recognition and serious occlusion.
Aiming at the problem of insignificant target morphological features, inaccurate detection and unclear boundary of small-target regions, and multitarget boundary overlap in multitarget complex image segmentation, combining the image segmentation mechanism of generative adversarial network with the feature enhancement method of nonlocal attention, a generative adversarial network fused with attention mechanism (AM-GAN) is proposed. The generative network in the model is composed of residual network and nonlocal attention module, which use the feature extraction and multiscale fusion mechanism of residual network, as well as feature enhancement and global information fusion ability of nonlocal spatial-channel dual attention to enhance the target features in the detection area and improve the continuity and clarity of the segmentation boundary. The adversarial network is composed of fully convolutional networks, which penalizes the loss of information in small-target regions by judging the authenticity of prediction and label segmentation and improves the detection ability of the generative adversarial model for small targets and the accuracy of multitarget segmentation. AM-GAN can use the GAN’s inherent mechanism that reconstruct and repair high-resolution image, as well as the ability of nonlocal attention global receptive field to strengthen detail features, automatically learn to focus on target structures of different shapes and sizes, highlight salient features useful for specific tasks, reduce the loss of image detail features, improve the accuracy of small-target detection, and optimize the segmentation boundary of multitargets. Taking medical MRI abdominal image segmentation as a verification experiment, multitargets such as liver, left/right kidney, and spleen are selected for segmentation and abnormal tissue detection. In the case of small and unbalanced sample datasets, the class pixels’ accuracy reaches 87.37%, the intersection over union is 92.42%, and the average Dice coefficient is 93%. Compared with other methods in the experiment, the segmentation precision and accuracy are greatly improved. It shows that the proposed method has good applicability for solving typical multitarget image segmentation problems such as small-target feature detection, boundary overlap, and offset deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.