The purpose of this work was to investigate the potential relationship between radiomic features extracted from pre-treatment x-ray CT images and clinical outcomes following stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC). Seventy patients who received SBRT for stage-1 NSCLC were retrospectively identified. The tumor was contoured on pre-treatment free-breathing CT images, from which 43 quantitative radiomic features were extracted to collectively capture tumor morphology, intensity, fine-texture, and coarse-texture. Treatment failure was defined based on cancer recurrence, local cancer recurrence, and non-local cancer recurrence following SBRT. The univariate association between each radiomic feature and each clinical endpoint was analyzed using Welch's t-test, and p-values were corrected for multiple hypothesis testing. Multivariate associations were based on regularized logistic regression with a singular value decomposition to reduce the dimensionality of the radiomics data. Two features demonstrated a statistically significant association with local failure: Homogeneity2 (p = 0.022) and Long-Run-High-Gray-Level-Emphasis (p = 0.048). These results indicate that relatively dense tumors with a homogenous coarse texture might be linked to higher rates of local recurrence. Multivariable logistic regression models produced maximum AUC values of 0.72 ± 0.04, 0.83 ± 0.03, and 0.60 ± 0.04, for the recurrence, local recurrence, and non-local recurrence endpoints, respectively. The CT-based radiomic features used in this study may be more associated with local failure than non-local failure following SBRT for stage I NSCLC. This finding is supported by both univariate and multivariate analyses.
Purpose: to develop digital phantoms for characterizing inconsistencies among radiomics extraction methods based on three radiomics toolboxes: CERR (Computational Environment for Radiological Research), IBEX (imaging biomarker explorer), and an in-house radiomics platform. Materials and Methods: we developed a series of digital bar phantoms for characterizing intensity and texture features and a series of heteromorphic sphere phantoms for characterizing shape features. The bar phantoms consisted of n equal-width bars (n=2, 4, 8, or 64). The voxel values of the bars were evenly distributed between 1 and 64. Starting from a perfect sphere, the heteromorphic sphere phantoms were constructed by stochastically attaching smaller spheres to the phantom surface over 5500 iterations. We compared 61 features typically extracted from three radiomics toolboxes: (1) CERR (2) IBEX (3) in-house toolbox. The degree of inconsistency was quantified by concordance correlation coefficient (CCC) and Pearson correlation coefficient (PCC). Sources of discrepancies were characterized based on differences in mathematical definition, pre-processing, and calculation methods. Results: For the intensity and texture features, only 53%, 45%, 55% features demonstrated perfect reproducibility (CCC=1) between in-house/CERR, in-house/IBEX, and CERR/IBEX comparisons, while 71%, 61%, 61% features reached CCC>0.8 and 25%, 39%, 39% features were with CCC<0.5, respectively. Meanwhile, most features demonstrated PCC>0.95. For shape features, the toolboxes produced similar (CCC>0.98) volume yet inconsistent surface area, leading to inconsistencies in other shape features. However, all toolboxes resulted in PCC>0.8 for all shape features except for compactness 1, where inconsistent mathematical definitions were observed. Discrepancies were characterized in pre-processing and calculation implementations from both type of phantoms. Conclusions: Inconsistencies among radiomics extraction toolboxes can be accurately identified using the developed digital phantoms. The inconsistencies demonstrate the significance of implementing quality assurance (QA) of radiomics extraction for reproducible and generalizable radiomic studies. Digital phantoms are therefore very useful tools for QA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.