The research of the formation mechanism of iron carbides is significant to design the high-performance catalysts for the Fischer–Tropsch synthesis (FTS) process. In this paper, the effect of potassium promoter on the formation of atomic carbon via carburization gases dissociation on the iron-based catalyst, the C2H4, C2H2 and CO/H2 adsorption energies and dissociation paths as well as the rate constants of the corresponding elementary steps are investigated by DFT on the Fe(110), Fe(110)-K2O, Fe(211) and Fe(211)-K2O surfaces. The calculation results demonstrated that the K2O promoter can modify the capabilities of surface C formation via the thermodynamic method as well as the kinetical method. The K2O promoter can increase the CO adsorption energy while decreasing the C2H4 adsorption energy both on Fe(110) and Fe(211) surfaces. Kinetically, via tuning the catalyst surfaces from Fe(110) to Fe(211), the K2O promoter can inhibit the ability of C2H4/C2H2 dissociation to atomic carbon, while enhancing the ability of CO/H2 decomposition to atomic carbon. The C2H4/C2H2 dissociation rate constants on Fe(211) and Fe(211)-K2O are about 107 times slower than that on Fe(110) and Fe(110)-K2O, whereas the dissociation rate constants of CO/H2 on Fe(211) are about 106 times faster than that on Fe(110), and about 107 times faster on Fe(211)-K2O than on Fe(110)-K2O.
The role of catalysis in controlling chemical reactions is crucial. As an important external stimulus regulatory tool, electric field (EF) catalysis enables further possibilities for chemical reaction regulation. To date, the regulation mechanism of electric fields and electrons on chemical reactions has been modeled. The electric field at the single-molecule electronic scale provides a powerful theoretical weapon to explore the dynamics of individual chemical reactions. The combination of electric fields and single-molecule electronic techniques not only uncovers new principles but also results in the regulation of chemical reactions at the single-molecule scale. This perspective focuses on the recent electric field-catalyzed, single-molecule chemical reactions and assembly, and highlights promising outlooks for future work in single-molecule catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.