Background: More and more studies show that long non-coding RNAs (lncRNAs) have miniature open reading frames that can be translated into short peptides. Here, we identify the long non-coding gene LINC00665 and its short peptides (CIP2A-BP) in hepatocellular carcinoma (HCC) and explore how they contribute to HCC progression.Materials and methods: First, GSE101728 data were acquired through the Gene Expression Omnibus for identification of differentially expressed genes (DEGs), and gene set enrichment analysis (GSEA) was conducted to find enriched biological pathways. Then, further bioinformatics analysis was carried out on the screened long non-coding genes, and LINC00665 expression was detected in HCC and normal liver samples. The relations between LINC00665 expression, HCC prognosis, and clinical characteristics were studied. Receiver operating characteristic (ROC) analysis was also applied to verify the LINC00665 prediction in HCC prognosis. In addition, pertinent experiments on LINC00665 and CIP2A-BP were also carried out to explore their roles in the progression of HCC.Results: As a result, we screened out 332 DEGs in total, including 130 upregulated and 202 downregulated DEGs. These DEGs were mainly enriched in posttranscriptional regulation of gene expression, RNA processing, nucleolus, and gene silencing biological pathways. In addition, we found that LINC00665 was increased in HCC samples, which substantially indicated its poor prognosis. Compared with normal tissues, LINC00665 had higher expression in the pathological stages III and IV, tumor-free groups, people no more than 60 years old, and stages T3, T4, N0, N1, and M1. ROC curve indicated that the variable INC00665 had certain accuracy in predicting overall survival (OS). Moreover, in functional experiments, LINC00665 knockdown could significantly decrease HCC cell proliferation, migration, and invasion, while overexpressed CIP2A-BP could markedly increase HCC cell proliferation, invasion, and migration.Conclusion: Our findings not only disclose a unique mechanism by which CIP2A-BP encoded by LINC00665 promotes HCC carcinogenesis but suggest that these long non-coding genes and short peptides could be used as biomarkers for HCC diagnosis and prognosis and new targets for HCC therapy.
Objective. To investigate the mechanisms underlying the development of right heart-associated PE. Background. Right heart-related pulmonary edema (PE) refers to PE resulting from impaired right heart function caused by primary or secondary factors, which is common in critically ill patients. Although the clinical manifestations of different types of right heart-related PE are similar, the pathophysiological changes and treatment methods are significantly different. According to the hemodynamic mechanism, right heart-related PE is primarily classified into two types. One is the increase of right heart flow, including extravascular compression, intravascular compression, cardiac compression, and cardiac decompression. The other type is the abnormal distribution of pulmonary circulation, including obstruction, resistance, pleural decompression, or negative pressure. With the development of hemodynamic monitoring, hemodynamic data not only help us understand the specific pathogenesis of right heart-related PE but also assist us in determining the direction of therapy and enabling individualized treatment. Summary. This article presents a review on right heart-associated PE, with a perspective of hemodynamic analysis, and emphasizes the importance of right heart function in the management of circulation. Understanding the mechanism of right heart-associated PE will not only aid in better monitoring right heart function but also help intensivists make a more accurate identification of various types of PE in the clinic.
Objectives: Procalcitonin (PCT) has long been proved as an early diagnostic signal for postoperative outcomes. The purpose of this study is to explore the value of serum procalcitonin levels in predicting post-hepatectomy liver failure (PHLF), and further to declarethe relationship between postoperative PCT and short-term prognosis in patients after hepatectomy.Methods: Clinical data of patients with hepatocellular carcinoma (HCC) who underwent hepatectomy from June 1st, 2019 to September 31st, 2020 at Shanghai Eastern Hepatobiliary Surgery Hospital had been retrospectively analyzed. Logistic regression analysis was used to evaluate the risk factors related to PHLF. The Kaplan-Meier method was used to calculate the PHLF rate and 30-day survival after surgery.Results: A total of 885 patients with complete data were finally included in analysis, 311 of them with elevated serum PCT (≥1 ng/ml). Results of the logistic regression analysis suggested a significant association between PCT and PHLF [HR, 95%CI; 3.801 (1.825, 7.917), p < 0.001]. Other significant risk factors for PHLF included portal hypertension, portal blocking time (>30 min) and blood transfusion (>200 ml). Kaplan-Meier analysis also suggested a higher PHLF rate in elevated PCT patients [9.0% (95% CI, 7.3 to 12.8 VS. 1.9% (95% CI, 1.1–4.3)); p < 0.001]. For secondary outcomes, elevated PCT was also highly associated with postoperative sepsis, ICU admission, 30-day mortality and 3-month mortality.Conclusion: Elevated procalcitonin level in patients after hepatectomy is related to higher PHLF rate, with lower 30-day survival and poor short-term postoperative outcomes.
BackgroundAcute respiratory distress syndrome (ARDS) is a serious organ failure and postoperative complication. However, the incidence rate, early prediction and prevention of postoperative ARDS in patients undergoing hepatectomy remain unidentified.MethodsA total of 1,032 patients undergoing hepatectomy between 2019 and 2020, at the Eastern Hepatobiliary Surgery Hospital were included. Patients in 2019 and 2020 were used as the development and validation cohorts, respectively. The incidence rate of ARDS was assessed. A logistic regression model and a least absolute shrinkage and selection operator (LASSO) regression model were used for constructing ARDS prediction models.ResultsThe incidence of ARDS was 8.8% (43/490) in the development cohort and 5.7% (31/542) in the validation cohort. Operation time, postoperative aspartate aminotransferase (AST), and postoperative hemoglobin (Hb) were all critical predictors identified by the logistic regression model, with an area under the curve (AUC) of 0.804 in the development cohort and 0.752 in the validation cohort. Additionally, nine predictors were identified by the LASSO regression model, with an AUC of 0.848 in the development cohort and 0.786 in the validation cohort.ConclusionWe reported the incidence of ARDS in patients undergoing hepatectomy and developed two simple and practical prediction models for early predicting postoperative ARDS in patients undergoing hepatectomy. These tools may improve clinicians’ ability to early estimate the risk of postoperative ARDS and timely prevent its emergence.
Object. To identify and explore the key transcription factors in hepatocellular carcinoma (HCC) progression. Methods. Differentially transcription factors (DETFs) were identified from differentially expressed genes (DEGs) in GSE62232 and transcription factors. Then, they were analyzed by regulatory networks, prognostic risk model, and overall survival analyses to identify the key DETF. Combined with the regulatory networks and binding site analysis, the target mRNA of key DETF was determined, and its prognostic value in HCC was evaluated by survival, clinical characteristics analyses, and experiments. Finally, the expressions and functions of the key DETF on the DEmRNAs were investigated in HCC cells. Results. Through multiple bioinformatics analyses, ASCL1 was identified as the key DETF, and SLC6A13 was predicted to be its target mRNA with the common binding site of CCAGCAACTGGCC, both downregulated in HCC. In survival analysis, high SLC6A13 was related to better HCC prognosis, and SLC6A13 was differentially expressed in HCC patients with clinical characteristics. Furthermore, cell experiments showed the mRNA expressions of ASCL1 and SLC6A13 were both reduced in HCC, and their overexpressions suppressed the growth, invasion, and migration of HCC cells. Besides, over-ASCL1 could upregulate SLC6A13 expression in HCC cells. Conclusion. This study identifies two suppressor genes in HCC progression, ASCL1 and SLC6A13, and the key transcription factor ASCL1 suppresses HCC progression by targeting SLC6A13 mRNA. They are both potential treatment targets and prognostic biomarkers for HCC patients, which provides new clues for HCC research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.