Spawning grounds are important areas for fish survival and reproduction, and play a key role in the supplement of fishery resources. This study investigated environmental effects on the spatiotemporal variability of spawning ground in the Pearl River Estuary (PRE), China, using the generalized additive model (GAM), based on satellite remote sensing (sea surface temperature (SST), chlorophyll-a concentration (Chl-a), sea surface salinity (SSS), depth), and in situ observations. Results showed that 39.8% of the total variation in fish egg density was explained by these factors. Among them, the most important factor was SST, accounting for 14.3%, followed by Depth, SSS, and Chl-a, with contributions of 9.7%, 8.5%, and 7.3%, respectively. Spawning grounds in the PRE were mainly distributed in the waters with SST of 22 °C, depth of 30–50 m, SSS of 16–35 ‰, and Chl-a of 6–15 mg/m3. From spring to summer, the spawning ground moved from the outlet of the PRE to the east. The distribution of the spawning ground in the PRE was mainly affected by the Pearl River Plume (PRP), Guangdong Coastal Current (GCC), and monsoons in this area.
In this study, a combination of example-based feature extraction and visual interpretation was applied to analyze the coastline variations in the Guangdong–Hong Kong–Macao Greater Bay Area (GHMGBA) from the past four decades based on the Landsat satellite remote sensing image data from 1987–2018, using ENVI and ArcGIS software. The results showed that the total length of the coastline of the GHMGBA increased in the past four decades, rising from 1291 km in 1987 to 1411 km in 2018. Among these, artificial coastline increased by 450 km, while the other coastline types decreased. The type of coastline that decreased the most was bedrock coastline, by a total of 172 km. The silty coastline disappeared, and almost all of it was converted to artificial coastline. Variations in the coastline of the GHMGBA were mainly connected to human activities and showed an overall trend of advancing towards the ocean. Dynamic monitoring of coastline variations can provide a reference for the protection of natural resources, sustainable marine development and rational planning of the coastal zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.