Highlights d The four types of CD3 signaling chains of TCR have functional diversity d CD3ε recruits Csk and p85 via its mono-phosphorylated ITAM and BRS motif respectively d Incorporation of CD3ε into 28Z CAR alters signaling to promote antitumor function d E28Z CAR-T cells have reduced cytokine production but enhanced persistence
Gastric cancer (GC) has significant morbidity and mortality worldwide and especially in China. Its molecular pathogenesis has not been thoroughly elaborated. The acknowledged biomarkers for diagnosis, prognosis, recurrence monitoring and treatment are lacking. Proteins from matched pairs of human GC and adjacent tissues were analyzed by a coupled label-free Mass Spectrometry (MS) approach, followed by functional annotation with software analysis. Nano-LC-MS/MS, quantitative real-time polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry were used to validate dysregulated proteins. One hundred forty-six dysregulated proteins with more than twofold expressions were quantified, 22 of which were first reported to be relevant with GC. Most of them were involved in cancers and gastrointestinal disease. The expression of a panel of four upregulated nucleic acid binding proteins, heterogeneous nuclear ribonucleoprotein hnRNPA2B1, hnRNPD, hnRNPL and Y-box binding protein 1 (YBX-1) were validated by Nano-LC-MS/MS, qRT-PCR, western blot and immunohistochemistry assays in ten GC patients’ tissues. They were located in the keynotes of a predicted interaction network and might play important roles in abnormal cell growth. The label-free quantitative proteomic approach provides a deeper understanding and novel insight into GC-related molecular changes and possible mechanisms. It also provides some potential biomarkers for clinical diagnosis.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a high mortality rate and poor prognosis. However, little is known concerning the molecular mechanism of PDAC at the proteomics level. Here we report a proteomics analysis of PDAC tumor and adjacent tissues by shotgun proteomics followed by label-free quantification, and in total, 3031 and 3306 proteins were identified in three pairs of PDAC tumor and adjacent tissues, respectively; 40 of them were differentially expressed for at least three-fold in PDAC tumor tissues. Ontological and interaction network analysis highlighted the dysregulation of a set of four proteins in the carboxypeptidase family: carboxypeptidase A1 (CPA1), A2 (CPA2), B1 (CPB1), and chymotrypsin C (CTRC). Western blotting confirmed the downregulation of the carboxypeptidase network in PDAC. Immunohistochemistry of tissue microarray from 90 PDAC patients demonstrated that CPB1 was downregulated 7.07-fold (P < .0001, n = 81) in tumor comparing with the peritumor tissue. Further 208 pancreatic tissues from PDAC tumor, peritumor, and pancreatis confirmed the downregulation of CPB1 in the PDAC patients. In summary, our results displayed that the expression of carboxypeptidase is significantly downregulated in PDAC tumor tissues and may be novel biomarker in the patient with PDAC.
T cell genome editing holds great promise to advance a range of immunotherapies but is encumbered by the dependence on difficult‐to‐produce and expensive viral vectors. Here, small double‐stranded plasmid DNA modified to mediate high‐efficiency homologous recombination is designed. The resulting chimeric antigen receptor (CAR)‐T cells display a similar phenotype, transcriptional profile, and in vivo potency to CAR‐T cells generated using adeno‐associated viral vector. This method should simplify and accelerate the use of precision engineering to produce edited T cells for research and clinical purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.