Based on an 0.18 μm process, this paper proposes a fully integrated 1.8 V output 300 mA load low-dropout linear regulator (LDO) with a fast transient response. By inserting a transient-enhanced biased Class AB super source follower at the gate of the output power transistor, this LDO can quickly adjust the gate voltage of the power transistor without additional power consumption. By adding an active capacitor circuit composed of a fast comparator with offset voltage at the output point, this LDO can quickly charge/discharge the transient current and accelerate the transient response without reducing the circuit stability. Simulation results show that the proposed LDO has an output voltage of 1.8 V, when the input voltage is 2 V to 5 V while consuming 66.4 μA of quiescent current. The proposed capless LDO has a 1.94 µV/mA load regulation, a 0.55 mV/V linear regulation, and a −60 dB@1kHz power supply rejection. When the load current steps from 3 mA to 300 mA in 300 ns, the LDO settles in 400 ns with an overshoot and undershoot of 67 mV and 86 mV, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.