The results show that patients with epilepsy have abnormal imaginary coherence, and suggest that the location and coherence of epileptic activity could be quantitatively identified and analyzed using neuromagnetic signals.
Functional near-infrared spectroscopy (fNIRS) detects hemodynamic responses in the cerebral cortex by transcranial spectroscopy. However, measurements recorded by fNIRS not only consist of the desired hemodynamic response but also consist of a number of physiological noises. Because of these noises, accurately detecting the regions that have an activated hemodynamic response while performing a task is a challenge when analyzing functional activity by fNIRS. In order to better detect the activation, we designed a multiscale analysis based on wavelet coherence. In this method, the experimental paradigm was expressed as a binary signal obtained while either performing or not performing a task. We convolved the signal with the canonical hemodynamic response function to predict a possible response. The wavelet coherence was used to investigate the relationship between the response and the data obtained by fNIRS at each channel. Subsequently, the coherence within a region of interest in the time-frequency domain was summed to evaluate the activation level at each channel. Experiments on both simulated and experimental data demonstrated that the method was effective for detecting activated channels hidden in fNIRS data.
Picture fuzzy sets, which are the extension of intuitionistic fuzzy sets, can deal with inconsistent information better in practical applications. A distance measure is an important mathematical tool to calculate the difference degree between picture fuzzy sets. Although some distance measures of picture fuzzy sets have been constructed, there are some unreasonable and counterintuitive cases. The main reason is that the existing distance measures do not or seldom consider the refusal degree of picture fuzzy sets. In order to solve these unreasonable and counterintuitive cases, in this paper, we propose a dynamic distance measure of picture fuzzy sets based on a picture fuzzy point operator. Through a numerical comparison and multi-criteria decision-making problems, we show that the proposed distance measure is reasonable and effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.