Background Liver cancer remains the leading cause of cancer death globally, and the treatment strategies are distinct for each type of malignant hepatic tumors. However, the differential diagnosis before surgery is challenging and subjective. This study aims to build an automatic diagnostic model for differentiating malignant hepatic tumors based on patients’ multimodal medical data including multi-phase contrast-enhanced computed tomography and clinical features. Methods Our study consisted of 723 patients from two centers, who were pathologically diagnosed with HCC, ICC or metastatic liver cancer. The training set and the test set consisted of 499 and 113 patients from center 1, respectively. The external test set consisted of 111 patients from center 2. We proposed a deep learning model with the modular design of SpatialExtractor-TemporalEncoder-Integration-Classifier (STIC), which take the advantage of deep CNN and gated RNN to effectively extract and integrate the diagnosis-related radiological and clinical features of patients. The code is publicly available at https://github.com/ruitian-olivia/STIC-model. Results The STIC model achieved an accuracy of 86.2% and AUC of 0.893 for classifying HCC and ICC on the test set. When extended to differential diagnosis of malignant hepatic tumors, the STIC model achieved an accuracy of 72.6% on the test set, comparable with the diagnostic level of doctors’ consensus (70.8%). With the assistance of the STIC model, doctors achieved better performance than doctors’ consensus diagnosis, with an increase of 8.3% in accuracy and 26.9% in sensitivity for ICC diagnosis on average. On the external test set from center 2, the STIC model achieved an accuracy of 82.9%, which verify the model’s generalization ability. Conclusions We incorporated deep CNN and gated RNN in the STIC model design for differentiating malignant hepatic tumors based on multi-phase CECT and clinical features. Our model can assist doctors to achieve better diagnostic performance, which is expected to serve as an AI assistance system and promote the precise treatment of liver cancer.
Motivation Enhancers are important functional elements in genome sequences. The identification of enhancers is a very challenging task due to the great diversity of enhancer sequences and the flexible localization on genomes. Till now, the interactions between enhancers and genes have not been fully understood yet. To speed up the studies of the regulatory roles of enhancers, computational tools for the prediction of enhancers have emerged in recent years. Especially, thanks to the ENCODE project and the advances of high-throughput experimental techniques, a large amount of experimentally verified enhancers have been annotated on the human genome, which allows large-scale predictions of unknown enhancers using data-driven methods. However, except for human and some model organisms, the validated enhancer annotations are scarce for most species, leading to more difficulties in the computational identification of enhancers for their genomes. Results In this study, we propose a deep learning-based predictor for enhancers, named CrepHAN, which is featured by a hierarchical attention neural network and word embedding-based representations for DNA sequences. We use the experimentally-supported data of the human genome to train the model, and perform experiments on human and other mammals, including mouse, cow, and dog. The experimental results show that CrepHAN has more advantages on cross-species predictions, and outperforms the existing models by a large margin. Especially, for human-mouse cross-predictions, the AUC score of ROC curve is increased by 0.033∼0.145 on the combined tissue dataset and 0.032∼0.109 on tissue-specific datasets. Availability bcmi.sjtu.edu.cn/~yangyang/CrepHAN.html Supplementary information Supplementary data are available at Bioinformatics online.
Accurately predicting patient survival is essential for cancer treatment decision.However, the prognostic prediction model based on histopathological images of stomach cancer patients is still yet to be developed. We propose a deep learningbased model (MultiDeepCox-SC) that predicts overall survival in patients with stomach cancer by integrating histopathological images, clinical data, and gene expression data. The MultiDeepCox-SC not only automatedly selects patches with more information for survival prediction, without manual labeling for histopathological images, but also identifies genetic and clinical risk factors associated with survival in stomach cancer. The prognostic accuracy of the MultiDeepCox-SC (C-index = 0.744) surpasses the result only based on histopathological image (C-index = 0.660). The risk score of our model was still an independent predictor of survival outcome after adjustment for potential confounders, including pathologic stage, grade, age, race, and gender on The Cancer Genome Atlas dataset (hazard ratio 1.555, p = 3.53e-08) and the external test set (hazard ratio 2.912, p = 9.42e-4). Our fully automated online prognostic tool based on histopathological images, clinical data, and gene expression data could be utilized to improve pathologists' efficiency and accuracy (https://yu.life.sjtu.edu.cn/ DeepC oxSC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.