In this work, spoof surface plasmon polaritons (SSPPs) supported by microstrip lines with T-shaped complementary grooves are proposed. Compared with the traditional SSPP structure based on single-conductor transmission lines, a broadband high-order mode of SSPPs can be predicted from the dispersion diagrams. Besides, a decrease in transverse size of 75% can be realized under the same asymptotic frequency. Then, a smooth and simple transition, which is composed of gradient complementary grooves, is designed to realize high-efficiency excitation and support practical applications of the high-order mode of SSPPs. As a result, a seamless connection with microstrip lines is easily achieved without using flaring ground, which simplifies the design procedure. Based on the proposed structure, a prototype of a SSPP waveguide is designed and fabricated. Both numerical and experimental results validate efficient excitation and broadband propagation (up to 12 GHz) of the high-order mode of SSPPs. This work will greatly accelerate the development of advanced plasmonic integrated circuits at microwave frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.