This paper proposes a support vector machine (SVM)-based AGV scheduling strategy that enhances the scheduling efficiency of automated guided vehicles (AGVs) in intelligent factories. The developed scheme optimizes the task area division process to endow the AGVs with the ability to avoid obstacles in complex dynamic environments. Specifically, given the two AGV motion cases, i.e., towards a single target point and multiple target points, the optimal path was determined utilizing the exhaustive and the Q-learning methods, while path optimization was realized by utilizing different schemes. Based on the shortest path obtained, a nonlinear programming model with the shortest time as the objective was built, and the AGV’s turning path was proved to be optimal by the non-dominated sorting genetic algorithm (NSGA-II). Several simulation tests and calculation results validated the proposed method’s effectiveness, highlighting that the developed scheme is a rational solution to the obstacle congestion and deadlock problems. Moreover, the experimental results demonstrated the proposed method’s superiority in path planning accuracy and its ability to respond well in complex dynamic environments. Overall, this research provides a reference for developing and applying AGV cluster scheduling in real operational scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.