With rapid advancements in sensing, networking, and computing technologies, recent years have witnessed the emergence of cyber-physical systems (CPS) in a broad range of application domains. CPS is a new class of engineered systems that features the integration of computation, communications, and control. In contrast to general-purpose computing systems, many cyber-physical applications are safety-cricial. These applications impose considerable requirements on quality of service (QoS) of the employed networking infrastruture. Since IEEE 802.15.4 has been widely considered as a suitable protocol for CPS over wireless sensor and actuator networks, it is of vital importance to evaluate its performance extensively. Serving for this purpose, this paper will analyze the performance of IEEE 802.15.4 standard operating in different modes respectively. Extensive simulations have been conducted to examine how network QoS will be impacted by some critical parameters. The results are presented and analyzed, which provide some useful insights for network parameter configuration and optimization for CPS design.
Cyber-Physical Systems (CPS) that collect, exchange, manage information, and coordinate actions are an integral part of the Smart Grid. In addition, Quality of Service (QoS) provisioning in CPS, especially in the wireless sensor/actuator networks, plays an essential role in Smart Grid applications. IEEE 802.15.4, which is one of the most widely used communication protocols in this area, still needs to be improved to meet multiple QoS requirements. This is because IEEE 802.15.4 slotted Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) employs static parameter configuration without supporting differentiated services and network self-adaptivity. To address this issue, this paper proposes a priority-based Service Differentiated and Adaptive CSMA/CA (SDA-CSMA/CA) algorithm to provide differentiated QoS for various Smart Grid applications as well as dynamically initialize backoff exponent according to traffic conditions. Simulation results demonstrate that the proposed SDA-CSMA/CA scheme significantly outperforms the IEEE 802.15.4 slotted CSMA/CA in terms of effective data rate, packet loss rate, and average delay.
IEEE 802.15.4 is regarded as one of the most suitable communication protocols for cyber-physical applications of wireless sensor and actuator networks. This is because this protocol is able to achieve low-power and low-cost transmission in wireless personal area networks. But most cyber-physical systems (CPSs) require a degree of real-time and reliability from the underlying communication protocol. Some of them are stricter than the others. However, IEEE 802.15.4 protocol cannot provide reliability and real-time transmission for time-critical and delay-sensitive data in cyber-physical applications. To solve this problem, we propose a new MAC protocol, i.e. the Ada-MAC protocol, which is based on IEEE 802.15.4 beacon-enabled mode. It can support cyber-physical applications such as health monitoring, which require stringent real-time and reliability guarantees. We implement the proposed protocol on the OMNET++ platform and conduct a performance evaluation of the proposed protocol with comparison against the traditional IEEE 802.15.4 protocol. The results are presented and analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.