BackgroundIn order to better monitor non-alcoholic fatty liver disease (NAFLD) patients at higher risk for HCC, there is a need for non-invasive diagnostic approaches to screen for the presence of advanced fibrosis in these patients. The aim of this systematic review and meta-analysis will be to evaluate the diagnostic efficacy of ARFI elastography in detecting hepatic fibrosis in NAFLD patients.MethodsRelevant studies were identified from systematic searches of several major electronic databases (PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials). The primary outcomes were the summary sensitivity, summary specificity, the diagnostic odds ratio, and the summary receiver operating characteristic curve (SROC) of ARFI elastography in detecting significant fibrosis (defined as 4>F≥2) in NAFLD patients. Study quality was assessed using the Quality Assessment of Studies of Diagnostic Accuracy included in Systematic Review (QUADAS-2).ResultsThe summary sensitivity and specificity of ARFI in detecting significant fibrosis were 80.2% (95% confidence interval (CI): 0.758–0.842; p = 0.0000) and 85.2% (95% CI: 0.808–0.890), p = 0.1617), respectively. The pooled diagnostic odds ratio of ARFI in detecting significant fibrosis was 30.13 (95% CI: 12.08–75; chi-squared = 14.59, p = 0.0237). The area under the SROC curve (AUC) was 0.898 (standard error (SE): 0.031) with a Q* index of 0.830 (SE: 0.033).ConclusionsARFI elastography appears to be modestly accurate in detecting significant fibrosis in NAFLD patients. Future studies in this field should provide head-to-head comparisons of ARFI elastography versus other elastographic imaging modalities in NAFLD patients.
Background Ovarian cancer seriously threatens the lives and health of women, and early diagnosis and treatment are still challenging. Pre-targeting is a promising strategy to improve the treatment efficacy of ovarian cancer and the results of ultrasound imaging. Purpose To explore the effects of a pre-targeting strategy using streptavidin (SA) and paclitaxel (PTX)-loaded phase-shifting poly lactic-co-glycolic acid (PLGA) nanoparticles with perfluoro-n-pentane (PTX-PLGA-SA/PFPs) on the treatment and ultrasound imaging of ovarian cancer. Methods PTX-PLGA/PFPs were prepared with a single emulsion (O/W) solvent evaporation method and SA was attached using carbodiimide. The encapsulation efficiency of PTX and the release characteristics were assessed with high performance liquid chromatography. The phase-change characteristics of the PTX-PLGA-SA/PFPs were investigated. The anti-carcinoembryonic antigen (CEA) antibody (Ab) was covalently attached to PTX-PLGA/PFPs via carbodiimide to create PTX-PLGA-Ab/PFPs. The targeting efficiency of the nanoparticles and the viability of ovarian cancer SKOV3 cells were evaluated in each group using a microscope, flow cytometry, and cell counting kit 8 assays. Results THE PTX-PLGA-SA/PFPs were spheres with a size of 383.0 ± 75.59 nm. The encapsulation efficiency and loading capability of the nanoparticles for PTX were 71.56 ± 6.51% and 6.57 ± 0.61%, respectively. PTX was burst-released up to 70% in 2–3 d. When irradiated at 7.5 W for 3 min, the PTX-PLGA-SA/PFPs visibly enhanced the ultrasonography images (P < 0.05). At temperatures of 45°C and 60°C the nanoparticles phase-shifted into micro-bubbles and the sizes increased. The binding efficiencies of SA and Ab to the PTX-PLGA/PFPs were 97.16 ± 1.20% and 92.74 ± 5.75%, respectively. Pre-targeting resulted in a high binding efficacy and killing effect on SKOV3 cells (P < 0.05). Conclusions The two-step pre-targeting process can significantly enhance the targeting ability of PTX-loaded PLGA nanoparticles for ovarian cancer cells and substantially improve the therapeutic efficacy. This technique provides a new method for ultrasonic imaging and precise chemotherapy for ovarian cancer.
Through digital rectal examinations (DRE) and routine prostate-specific antigen (PSA) screening, early prostate cancer (PC) treatment has become possible. However, PC is a complex and heterogeneous disease. In vivo, cancer cells can invade adjacent tissues and metastasize to other tissues resulting in hard cures. Therefore, the key to improving PC patients' survival time is preventing cancer cells' metastasis. We used mass spectrometry to profile primary PC in patients with versus without metastatic PC. We named these two groups of PC patients as high-risk primary PC (n = 11) and low-risk primary PC (n = 7), respectively. At the same time, patients with benign prostatic hyperplasia (BPH, n = 6) were used as controls to explore the possible factors driving PC metastasis. Based on comprehensive mass spectrometry analysis and biological validation, we found significant upregulation of MRPL4 expression in high-risk primary PC relative to low-risk primary PC and BPH. Further, through research of the extensive clinical cohort data in the database, we discovered that MRPL4 could be a high-risk factor for PC and serve as a potential diagnostic biomarker. The MRPL4 might be used as an auxiliary indicator for clinical status/stage of primary PC to predict patient survival time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.