In this work, magnetite nanoparticles (Fe3O4) that are well dispersed by a submicron sized carbon framework in a pomegranate shape are engineered using a flexible one-step spray pyrolysis strategy. Under inert gas atmosphere, the homogeneously mixed Fe3+ ions and chitosan (CS) molecules are in situ transformed to Fe3O4 nanoparticles and spherical nitrogen-doped carbon coating domains, respectively. Moreover, the obtained Fe3O4@C composite exhibits a unique submicron sized pomegranate configuration, in which favorable electric/ionic pathways have been constructed and the Fe3O4 nanoparticles have been effectively dispersed. When used as an anode electrochemical active material, the Fe3O4@C composite exhibits impressive lithium-ion storage capabilities, and maintains a reversible capacity of 500.2 mAh·g−1 after 500 cycles at a high current density of 1000 mA·g−1 as well as good rate capability. The strategy in this work is straightforward and effective, and the synthesized Fe3O4@C material has good potential in wider applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.