Studies have shown that percutaneous nerve stimulation can promote repair of ulnar neuropathy. However, this approach requires further optimization. We evaluated multielectrode array-based percutaneous nerve stimulation for treatment of ulnar nerve injury. The optimal stimulation protocol was determined using a multi-layer model of the human forearm using the finite element method. We optimized the number and distance between electrodes, and used ultrasound to aid in electrode placement. Six electrical needles in series along the injured nerve at alternating distances of five and seven centimeters. We validated the model in a clinical trial. Twenty-seven patients were randomly assigned to a control group (CN) and an electrical stimulation with finite element group (FES). The results showed that disability of arm shoulder and hand (DASH) scores decreased and grip strength increased to a greater extent in the FES group than those in the CN group following treatment (P<0.05). Furthermore, the amplitudes of compound motor action potentials (cMAPs) and sensory nerve action potentials (SNAPs) improved in the FES group to a greater extent than those in the CN group. The results showed that our intervention improved hand function and muscle strength, and aided in neurologic recovery, as shown using electromyography. Analysis of blood samples indicated that our intervention may have promoted conversion of the precursor form of brain-derived neurotrophic factor (pro-BDNF) to mature brain-derived neurotrophic factor (BDNF) to promote nerve regeneration. Our percutaneous nerve stimulation regimen for ulnar nerve injury has potential to become a standard treatment option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.