The planted (I, d) motif search (PMS) is an im portant yet challenging problem in com putational biology. Pattern driven PMS algorithm s usually use k out of t input sequences as reference sequences to generate candidate motifs, and they can find all the (I, d) motifs in the input sequences. However, most of them simply take the first k sequences in the input as reference sequences without elaborate selection processes, and thus they may exhibit sharp fluctuations in running time, especially for large alphabets.In this paper, we build the reference sequence selection problem and propose a method named RefSelect to quickly solve it by evaluating the number of candidate motifs for the reference sequences. RefSelect can bring a practical tim e improvement of the state-of-the-art pattern-driven PMS algorithm s.Experimental results show that RefSelect (1) makes the tested algorithm s solve the PMS problem steadily in an efficient way, (2) particularly, makes them achieve a speedup of up to about 100x on the protein data, and (3) is also suitable for large data sets which contain hundreds or more sequences.
BackgroundThe planted (l, d) motif search (PMS) is an important yet challenging problem in computational biology. Pattern-driven PMS algorithms usually use k out of t input sequences as reference sequences to generate candidate motifs, and they can find all the (l, d) motifs in the input sequences. However, most of them simply take the first k sequences in the input as reference sequences without elaborate selection processes, and thus they may exhibit sharp fluctuations in running time, especially for large alphabets.ResultsIn this paper, we build the reference sequence selection problem and propose a method named RefSelect to quickly solve it by evaluating the number of candidate motifs for the reference sequences. RefSelect can bring a practical time improvement of the state-of-the-art pattern-driven PMS algorithms. Experimental results show that RefSelect (1) makes the tested algorithms solve the PMS problem steadily in an efficient way, (2) particularly, makes them achieve a speedup of up to about 100× on the protein data, and (3) is also suitable for large data sets which contain hundreds or more sequences.ConclusionsThe proposed algorithm RefSelect can be used to solve the problem that many pattern-driven PMS algorithms present execution time instability. RefSelect requires a small amount of storage space and is capable of selecting reference sequences efficiently and effectively. Also, the parallel version of RefSelect is provided for handling large data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.