Epstein–Barr virus-associated gastric cancer (EBVaGC) shows a robust response to immune checkpoint inhibitors. Therefore, a cost-efficient and accessible tool is needed for discriminating EBV status in patients with gastric cancer. Here we introduce a deep convolutional neural network called EBVNet and its fusion with pathologists for predicting EBVaGC from histopathology. The EBVNet yields an averaged area under the receiver operating curve (AUROC) of 0.969 from the internal cross validation, an AUROC of 0.941 on an external dataset from multiple institutes and an AUROC of 0.895 on The Cancer Genome Atlas dataset. The human-machine fusion significantly improves the diagnostic performance of both the EBVNet and the pathologist. This finding suggests that our EBVNet could provide an innovative approach for the identification of EBVaGC and may help effectively select patients with gastric cancer for immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.