Bad meteorological conditions may reduce the reliability of power communication equipment, which can increase the distortion possibility of fault information in the communication process, hence raising its uncertainty and incompleteness. To address the issue, this paper proposes a fault diagnosis method for transmission networks considering meteorological factors. Firstly, a spiking neural P system considering a meteorological living environment and its matrix reasoning algorithm are designed. Secondly, based on the topology structure of the target power transmission network and the action logic of its protection devices, a diagnosis model based on the spiking neural P system considering the meteorological living environment is built for each suspicious fault transmission line. Following this, the action messages of protection devices and corresponding temporal order information are used to obtain initial pulse values of input neurons of the diagnosis model, which are then modified with the gray fuzzy theory. Finally, the matrix reasoning algorithm of each model is executed in a parallel manner to obtain diagnosis results. Experiment results achieved out on IEEE 39-bus system show the feasibility and effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.