Summary
Phase behavior and physical properties including saturation pressures, swelling factors (SFs), phase volumes, dimethyl ether (DME) partition coefficients, and DME solubility for heavy-oil mixtures containing polar substances have been experimentally and theoretically determined. Experimentally, novel phase behavior experiments of DME/water/heavy-oil mixtures spanning a wide range of pressures and temperatures have been conducted. More specifically, a total of five pressure/volume/temperature (PVT) experiments consisting of two tests of DME/heavy-oil mixtures and three tests of DME/water/heavy-oil mixtures have been performed to measure saturation pressures, phase volumes, and SFs. Theoretically, the modified Peng-Robinson equation of state (EOS) (PR EOS) together with the Huron-Vidal mixing rule, as well as the Péneloux et al. (1982)volume-translation strategy, is adopted to perform phase-equilibrium calculations. The binary-interaction parameter (BIP) between the DME/heavy-oil pair, which is obtained by matching the measured saturation pressures of DME/heavy-oil mixtures, works well for DME/heavy-oil mixtures in the presence and absence of water. The new model developed in this work is capable of accurately reproducing the experimentally measured multiphase boundaries, phase volumes, and SFs for the aforementioned mixtures with the root-mean-squared relative error (RMSRE) of 3.92, 9.40, and 0.92%, respectively, while it can also be used to determine DME partition coefficients and DME solubility for DME/water/heavy-oil systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.