[1] A viscoelastic model is proposed to describe the propagation of gravity waves into various types of ice cover. The ice-ocean system is modeled as a homogeneous viscoelastic fluid overlying an inviscid layer. Both layers have finite thickness. The viscosity is imagined to originate from the frazil ice or ice floes much smaller than the wavelength, and the elasticity from ice floes which are relatively large compared to the wavelength. A compact form of the dispersion relation is obtained. Under proper limiting conditions this dispersion relation can be reduced to several previously established models including the mass loading model, the viscous layer model and the thin elastic plate model. The full dispersion relation contains several propagating wave modes under the ice cover. The following two criteria are used to select the dominant wave mode: (1) wave number is the closest to the open water value and (2) attenuation rate is the least among all modes. The modes selected from those criteria coincide with the ones discussed in previous studies, which are shown to be limiting cases in small or large elasticity regimes of the present model. In the intermediate elasticity regime, however, it appears that there are three wave modes with similar wavelengths and attenuation rates. Implications of this intermediate elasticity range remain to be seen. The general viscoelastic model bridges the gap among existing models. It also provides a unified tool for wave-ice modelers to parameterize the polar regions populated with various types of ice cover.Citation: Wang, R., and H. H. Shen (2010), Gravity waves propagating into an ice-covered ocean: A viscoelastic model,
Pulsed discharge plasma and its application is one of the promising directions in civilian areas of pulsed power technology. In order to promote the research and development of the theory and application technology for pulsed discharge plasma, in this paper, recent progress on the mechanism of nanosecond-pulse gas discharge and the characteristics and applications of typical pulsed plasma at the Institute of Electrical Engineering, Chinese Academy of Sciences is reviewed. Firstly, progress on mechanism of nanosecond-pulse discharge based on runaway electrons and measurement technology of runaway electrons is introduced. Then, the characteristics of three typical discharges, including direct-driven pulsed discharge, pulsed dielectric barrier discharge and pulsed plasma jet, are reviewed. Furthermore, typical plasma applications of pulsed plasma on surface modification and methane conversion are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.