Fire image monitoring systems are being applied to more and more fields, owing to their large monitoring area. However, the existing image processing-based fire detection technology cannot effectively make real-time fire warning in actual scenes, and the relevant fire recognition algorithms are not robust enough. To solve the problems, this paper tries to extract and classify image features for fire recognition based on convolutional neural network (CNN). Specifically, the authors set up the framework of a fire recognition system based on fire video images (FVIFRS), and extracted both static and dynamic features of flame. To improve the efficiency of image analysis, a Gaussian mixture model was established to extract the features from the fire smoke movement areas. Finally, the CNN was improved to process and classify the fire feature maps of the CNN. The proposed algorithm and model were proved to be feasible and effective through experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.