DNA methylation has a growing potential for use as a biomarker because of its involvement in disease. DNA methylation data have also substantially grown in volume during the past 5 years. To facilitate access to these fragmented data, we proposed DiseaseMeth version 3.0 based on DiseaseMeth version 2.0, in which the number of diseases including increased from 88 to 162 and High-throughput profiles samples increased from 32 701 to 49 949. Experimentally confirmed associations added 448 pairs obtained by manual literature mining from 1472 papers in PubMed. The search, analyze and tools sections were updated to increase performance. In particular, the FunctionSearch now provides for the functional enrichment of genes from localized GO and KEGG annotation. We have also developed a unified analysis pipeline for identifying differentially DNA methylated genes (DMGs) from the original data stored in the database. 22 718 DMGs were found in 99 diseases. These DMGs offer application in disease evaluation using two self-developed online tools, Methylation Disease Correlation and Cancer Prognosis & Co-Methylation. All query results can be downloaded and can also be displayed through a box plot, heatmap or network module according to whichever search section is used. DiseaseMeth version 3.0 is freely available at http://diseasemeth.edbc.org/.
Luminal breast cancer (BC) accounts for a large proportion of patients in BC, with high heterogeneity. Determining the precise subtype and optimal selection of treatment options for luminal BC is a challenge. In this study, we proposed an MSBR framework that integrate DNA methylation profiles and transcriptomes to identify immune subgroups of luminal BC. MSBR was implemented both on a key module scoring algorithm and “Boruta” feature selection method by DNA methylation. Luminal A was divided into two subgroups and luminal B was divided into three subgroups using the MSBR. Furthermore, these subgroups were defined as different immune subgroups in luminal A and B respectively. The subgroups showed significant differences in DNA methylation levels, immune microenvironment (immune cell infiltration, immune checkpoint PD1/PD-L1 expression, immune cell cracking activity (CYT)) and pathology features (texture, eccentricity, intensity and tumor-infiltrating lymphocytes (TILs)). The results also showed that there is a subgroup in both luminal A and B that has the benefit from immunotherapy. This study proposed a classification of luminal BC from the perspective of epigenetics and immune characteristics, which provided individualized treatment decisions.
Anti-CRISPRs (Acrs) are natural inhibitors of bacteria’s CRISPR-Cas systems, and have been developed as a safeguard to reduce the off-target effects of CRISPR gene-editing technology. Acrs can directly bind to CRISPR-Cas complexes and inhibit their activities. However, whether this process is under regulation in diverse eukaryotic cellular environments is poorly understood. In this work, we report the discovery of a redox switch for NmeAcrIIC1, which regulates NmeAcrIIC1’s monomer-dimer interconversion and inhibitory activity on Cas9. Further structural studies reveal that a pair of conserved cysteines mediates the formation of inactive NmeAcrIIC1 dimer and directs the redox cycle. The redox switch also applies to the other two AcrIIC1 orthologs. Moreover, by replacing the redox-sensitive cysteines, we generated a robust AcrIIC1 variant that maintains potent inhibitory activity under various redox conditions. Our results reveal a redox-dependent regulation mechanism of Acr, and shed light on the design of superior Acr for CRISPR-Cas systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.