Helicobacter pylori is closely associated with gastric cancer. During persistent infection, Helicobacter pylori can form a microenvironment in gastric mucosa which facilitates the survival and colony formation of Helicobacter pylori. Tumor stromal cells are involved in this process, including tumor-associated macrophages, mesenchymal stem cells, cancer-associated fibroblasts, and myeloid-derived suppressor cells, and so on. The immune checkpoints are also regulated by Helicobacter pylori infection. Helicobacter pylori virulence factors can also act as immunogens or adjuvants to elicit or enhance immune responses, indicating their potential applications in vaccine development and tumor immunotherapy. This review highlights the effects of Helicobacter pylori on the immune microenvironment and its potential roles in tumor immunotherapy responses.
Gastric cancer is characterized by high morbidity and mortality worldwide. Early-stage gastric cancer is mainly treated with surgery, while for advanced gastric cancer, the current treatment options remain insufficient. In the 2022 NCCN Guidelines for Gastric Cancer, immunotherapy is listed as a first-line option for certain conditions. Immunotherapy for gastric cancer mainly targets the PD-1 molecule and achieves therapeutic effects by activating T cells. In addition, therapeutic strategies targeting other molecules, such as CTLA4, LAG3, Tim3, TIGIT, and OX40, have also been developed to improve the treatment efficacy of gastric cancer immunotherapy. This review summarizes the molecular biomarkers of gastric cancer immunotherapy and their clinical trials.
Background Immunotherapy, especially immune checkpoint inhibitors, has been widely used in tumor therapy and have shown ideal clinical efficacy. However, some cancers still do not respond to PD‐1/PD‐L1 blockade therapy effectively. Helicobacter pylori infection might affect the curative effect of immunotherapy while it is rarely reported. We aimed to visualize the research hotspots and trends of H. pylori and immunotherapy using a bibliometric analysis to help understand the future development of basic and clinical research. Methods The relevant publications on H. pylori and immunotherapy were searched on April 20, 2022, in the Web of Science Core Collection Database (WOSCC). The document types were limited to articles and reviews. The VOSviewer 1.6.16 software was used to assess the co‐authorship, co‐occurrence, citation of countries, institutions, authors, journals, and hotspot keywords. The research status and trend change of H. pylori and immunotherapy were analyzed by bibliometric analysis. Results A total of 95 studies authored by 561 researchers were eventually included in this study. The majority of the retrieved studies were 55 (58%) original research articles. China conducted the greatest number of studies, followed by USA and Italy. The related topics included the following three aspects: the relationship between microorganisms and cancer, the relationship between gastric cancer and immunity, and the relationship between H. pylori and immunotherapy, including purified/cloned components of H. pylori acting as efficient adjuvant to boost tumor responses and H. pylori infection which modulate host immune responses and impact on the efficacy of antitumor immunity initiated by immune checkpoint inhibitors. The timing diagram revealed that the current research hotspots focused on effects of microorganisms on immunotherapy. Conclusion The effect of H. pylori on cancer immunotherapy is getting more and more attention in these years. It still remains uncertain, and more studies are needed in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.