BackgroundRhubarb is an important traditional Chinese medicine, and rhein is one of its most important active ingredients. Studies have found that rhein can improve ulcerative colitis by regulating gut microbes, but there are few reports on its effects on liver diseases. Therefore, this study aims to investigate these effects and underlying mechanisms.MethodsMice were given rhein (100 mg/kg), with both a normal control group and a model group receiving the same amount of normal saline for one week. Acute liver injury was induced in mice by intraperitoneal injection of D-GalN (800 mg/kg)/LPS (10 ug/kg). Samples (blood, liver, and stool) were then collected and assessed for histological lesions and used for 16S rRNA gene sequencing, high-performance liquid chromatography-mass spectrometry (LC-MS) and RNA-seq analysis.ResultsThe levels of ALT and AST in the Model group were abnormal higher compared to the normal control group, and the levels of ALT and AST were significantly relieved in the rhein group. Hepatic HE staining showed that the degree of liver injury in the rhein group was lighter than that in the model group, and microbiological results showed that norank_o:Clostridia_UCG-014, Lachnoclostridium, and Roseburia were more abundant in the model group compared to the normal control group. Notably, the rhein treatment group showed reshaped disturbance of intestinal microbial community by D-GalN/LPS and these mice also had higher levels of Verrucomicrobia, Akkermansiaceae and Bacteroidetes. Additionally, There were multiple metabolites that were significantly different between the normal control group and the model group, such as L-α-amino acid, ofloxacin-N-oxide, 1-hydroxy-1,3-diphenylpropan-2-one,and L-4-hydroxyglutamate semialdehyde, but that returned to normal levels after rhein treatment. The gene expression level in the model group also changed significantly, various genes such as Cxcl2, S100a9, Tnf, Ereg, and IL-10 were up-regulated, while Mfsd2a and Bhlhe41 were down-regulated, which were recovered after rhein treatment.ConclusionOverall, our results show that rhein alleviated D-GalN/LPS-induced acute liver injury in mice. It may help modulate gut microbiota in mice, thereby changing metabolism in the intestine. Meanwhile, rhein also may help regulate genes expression level to alleviate D-GalN/LPS-induced acute liver injury.
The Qingchangligan formula (QCLGF) is a traditional Chinese medicine that has significant clinical potential for patients with acute liver failure (ALF). However, the experimental evidence of the effect of QCLGF on ALF and the associated mechanisms remain elusive. We aimed to evaluate the function of QCLGF in ALF and the underlying mechanism. ALF was induced in rats by intraperitoneal injection of D-GalN (1100 mg/kg). The Qingchangligan formula was administered to the rats (6.725 g/kg · d) for 5 days, and the model group and the control group were given the same amount of physiological saline. Then 16S rRNA gene sequencing, high performance gas chromatography-mass spectrometry (GC-MS), and RNA-seq analysis were performed on the samples. The levels of ALT and AST in the ALF rats were abnormal (5322.08 ± 566.27 U/L and 7655.95 ± 1238.08 U/L, respectively) compared with the normal control (98.98 ± 6.90 U/L and 99.63 ± 10.94 U/L, respectively). The levels of ALT and AST in the QCLGF rats (2997.67 ± 469.24 U/L and 4158.40 ± 596.07 U/L, respectively) were closer the normal control group. Liver HE staining showed that the degree of liver damage in the QCLGF rats was lighter than that in the ALF rats. The overall structure of the gut microbiota after ALF was significantly altered, including Proteobacteria, Blautia, Romboutsia, Parabacteroides, UCG-008, Parasutterella, Ruminococcus, norank_f:Lachnospiraceae, the Eubacterium_xylanophilum_group, Oscillibacter, and Eisenbergiella. QCLGF balanced the structure and abundance of intestinal flora. The levels of D(+)galactose, isopropyl beta-D-1-thiogalactopyranoside and D-mannitol were lighter in the plasma of the ALF rats than in the normal control rats, but there were significantly elevated levels of those metabolites in the QCLGF rats. The gene expression changed significantly in the ALF rats. QCLGF regulated the expression of THBS1 and the KEGG pathways of carbohydrate metabolism, lipid metabolism, signal transduction, the immune system, and infectious disease: bacterial. QCLGF may alleviating intestinal flora disorder, regulating galactose metabolism and downregulating the expression of THBS1 to alleviate D-GalN induced acute liver failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.