Orf, caused by Orf virus (ORFV), is a globally distributed zoonotic disease responsible for serious economic losses in the agricultural sector. However, the mechanism underlying ORFV infection remains largely unknown. Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs, play important roles in various pathological processes but their involvement in ORFV infection and host response is unclear. In the current study, whole transcriptome sequencing and small RNA sequencing were performed in ORFV-infected goat skin fibroblast cells and uninfected cells. A total of 151 circRNAs, 341 messenger RNAs (mRNAs), and 56 microRNAs (miRNAs) were differently expressed following ORFV infection. Four circRNAs: circRNA1001, circRNA1684, circRNA3127 and circRNA7880 were validated by qRT-PCR and Sanger sequencing. Gene ontology (GO) analysis indicated that host genes of differently expressed circRNAs were significantly enriched in regulation of inflammatory response, epithelial structure maintenance, positive regulation of cell migration, positive regulation of ubiquitin-protein transferase activity, regulation of ion transmembrane transport, etc. The constructed circRNA-miRNA-mRNA network suggested that circRNAs may function as miRNA sponges indirectly regulating gene expression following ORFV infection. Our study presented the first comprehensive profiles of circRNAs in response to ORFV infection, thus providing new clues for the mechanisms of interactions between ORFV and the host.
Brucella-caused brucellosis is one of the most widespread worldwide zoonoses. Lipopolysaccharide (LPS) of Brucella, which functions as pathogen-associated molecular patterns (PAMPs), is an important virulence factor that elicits protective antibodies. Per of B. melitensis is involved in the biosynthesis of the O-side chain of LPS. Autophagy is a crucial element of the innate immune response against intracellular pathogens including Brucella. In this study, we observed that autophagy was inhibited in RAW264.7 cells infected with Brucella melitensis ∆per. And, a high-throughput array-based screen and qRT-PCR validation were performed to identify the differentially expressed miRNAs in RAW264.7 cells infected with B. melitensis M5-90 ∆per. The results suggested that mmu-miR-146a-5p, mmu-miR-155-5p, mmu-miR-146b-5p, and mmu-miR-3473a were upregulated and mmu-miR-30c-5p was downregulated. During B. melitensis M5-90 ∆per infection, the increased expression of miR-146b-5p inhibited the autophagy activation in RAW264.7 cells. Using a bioinformatics approach, Tbc1d14 was predicted to be a potential target of miR-146b-5p. The results of a luciferase reporter assay indicated that miR-146b-5p directly targeted the 3′-UTR of Tbc1d14, and the interaction between miR-146b-5p and the 3′-UTR of Tbc1d14 was sequence-specific. High-throughput RNA-Seq-based screening was performed to identify differentially expressed genes in Tbc1d14-expressing RAW264.7 cells, and these were validated by qRT-PCR. Among the differentially expressed genes, four autophagy associated genes, IFNγ-inducible p47 GTPase 1 (IIGP1), nuclear receptor binding protein 2 (Nrbp2), transformation related protein 53 inducible nuclear protein 1 (Trp53inp1), and immunity-related GTPase family M member 1 (Irgm1), were obtained. Our findings provide important insights into the functional mechanism of LPS of B. melitensis.
Brucellosis is a worldwide zoonosis caused by Brucella species and represents a serious threat to both human and animal health. Omp25 is an important immunogenic and protective antigen in Brucella species; however, the functional mechanism of Omp25 in macrophages has not yet been elucidated. Here, we constructed a Brucella melitensis omp25 deletion mutant (M5-90-Δ omp25) and performed microRNA (miRNA) profiling of infected RAW264.7 cells. Eight differentially expressed miRNAs ( mmu-miR-146a-5p, mmu-miR-155-5p, mmu-miR-3473a, mmu-miR-149-3p, mmu-miR-671-5p, mmu-miR-1224-5p, mmu-miR-1895, and mmu-miR-5126) were identified, with quantitative real-time PCR (qRT-PCR) analysis confirming the up-regulation of mmu-miR-146-a-5p and mmu-miR-155-5p and down-regulation of mmu-miR-149-3p and mmu-miR-5126. mRNA profiling of B. melitensis M5-90-Δo mp25-infected RAW264.7 cells identified 967 differentially expressed genes (DEGs) (fold change ≥ 2). Among these, we focused on genes that were predicted by TargetScan, miRanda, and PicTar to be the potential targets of the differentially expressed miRNAs. The results suggested that 17 separate genes are potentially targeted by mmu-miR-149-3p, with one of these genes, Tbr1, also targeted by mmu-miR-5126. qRT-PCR analysis confirmed the up-regulation of nine of the predicted target genes. Our findings provide important information about the functional molecules in host cells, including miRNA and their target genes, affected by Omp25 from Brucella. This information is particularly valuable for the prophylaxis and treatment of brucellosis.
Melioidosis is a severe and fatal tropical zoonosis, which is triggered by Burkholderia pseudomallei. To better understand the host's response to infection of B. pseudomallei, an RNA-Seq technology was used to confirm differentially expressed genes (DEGs) in RAW264.7 cells infected with B. pseudomallei. In total, 4668 DEGs were identified across three time points (4, 8, and 11 hours after infection). Short Time-Series Expression Miner (STEM) analysis revealed the temporal gene expression profiles and identified seven significant patterns in a total of 26 profiles. Kyoto Encyclopedia of Genes and Genomes (KEGG) was utilized to confirm significantly enriched immune process-associated pathways, and 10 DEGs, including Ccl9, Ifnb1, Tnfα, Ptgs2, Tnfaip3, Zbp1, Ccl5, Ifi202b, Nfkbia, and Nfkbie, were mapped to eight immune process-associated pathways. Subsequent quantitative real-time PCR assays confirmed that the 10 DEGs were all upregulated during infection. Overall, the results showed that B. pseudomallei infection can initiate a time-series upregulation of immune process-associated DEGs in RAW264.7 macrophage cells. The discovery of this article helps us better understand the biological function of the immune process-associated genes during B. pseudomallei infection and may aid in the development of prophylaxis and treatment protocols for melioidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.