Modeling large spatial deflections of flexible beams has been one of the most challenging problems in the research community of compliant mechanisms. This work presents a method called chained spatial-beam constraint model (CSBCM) for modeling large spatial deflections of flexible bisymmetric beams in compliant mechanisms. CSBCM is based on the spatial-beam constraint model (SBCM), which was developed for the purpose of accurately predicting the nonlinear constraint characteristics of bisymmetric spatial beams in their intermediate deflection range. CSBCM deals with large spatial deflections by dividing a spatial beam into several elements, modeling each element with SBCM, and then assembling the deflected elements using the transformation defined by Tait–Bryan angles to form the whole deflection. It is demonstrated that CSBCM is capable of solving various large spatial deflection problems either the tip loads are known or the tip deflections are known. The examples show that CSBCM can accurately predict large spatial deflections of flexible beams, as compared to the available nonlinear finite element analysis (FEA) results obtained by ansys. The results also demonstrated the unique capabilities of CSBCM to solve large spatial deflection problems that are outside the range of ansys.
Modeling large spatial deflections of flexible beams has been one of the most challenging problems in the research of compliant mechanism. This work presents an approach called chained power series model for modeling large spatial defections of flexible beams with uniform rectangular cross section. This approach is based on the power series model developed in our previous work for modeling spatial deflections of rectangular beams in the intermediate deflection range. The chained power series model splits a rectangular beam into several elements and models each element by the power series model, then the deflections of all elements are assembled to form the deflection of the beam through transformations using quaternions. The effectiveness of the approach is demonstrated by comparing with the nonlinear finite element model preformed in ANSYS and the chained 3D pseudo-rigid-body model. Several examples are demonstrated to show the capability of the chained power series model for solving the deflections of rectangular beams in compliant mechanisms.
Although energy-based methods have advantages over the Newtonian methods for kinetostatic modeling, the geometric nonlinearities inherent in deflections of compliant mechanisms preclude most of the energy-based theorems. Castigliano’s first theorem and the Crotti-Engesser theorem, which don’t require the problem being solved to be linear, are selected to construct the energy-based kinetostatic modeling framework for compliant mechanisms in this work. Utilization of these two theorems requires explicitly formulating the strain energy in terms of deflections and the complementary strain energy in terms of loads, which are derived based on the beam constraint model. The kinetostatic modeling of two compliant mechanisms are provided to demonstrate the effectiveness of using Castigliano’s first theorem and the Crotti-Engesser theorem with the explicit formulations in this framework. Future work will be focused on incorporating use of the principle of minimum strain energy and the principle of minimum complementary strain energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.